Pushdown Automata and ContextFree Languages

NPDAs

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple $\mathrm{M}=(\mathrm{Q}$, , , $\mathrm{s}, \perp, \mathrm{F})$ where

Q is a finite set (the states)
is a finite set (the input alphabet)
is a finite set (the stack alphabet)
$\subseteq(\mathrm{Q} \times(\mathrm{U}\{ \}) \times) \times\left(\mathrm{Q} \mathrm{x}^{*}\right)$ is the transition relation
$\mathrm{s} \in \mathrm{Q}$ is the start state

- $\perp \in$ is the initial stack symbol
- $\mathrm{F} \subseteq \mathrm{Q}$ is the final or accept states
- $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in$ means that
whenever the machine is in state p reading input symbol a on the input tape and A on the top of the stack, it pops A off the stack, push $B_{1} B_{2} \ldots B_{k}$ onto the stack (B_{k} first and B_{1} last), move its read head right one cell past the one storing a and enter state q .
$\left(\left(p_{1}, A\right),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in \quad$ means similar to $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in$ except that it need not scan and consume any input symbol.
- Collection of information used to record the snapshot of an executing NPDA
- an element of $\mathrm{Q} x \quad * \mathrm{x} \quad *$.
- Configuration $C=(q, x, w)$ means
- the machine is at state q,
\circ the rest unread input string is x ,
- the stack content is w.
- Example: the configuration (p, baaabba, $A B A C \perp$) might describe the situation:

Start configuration and the next configuration relations

- Given a NPDA M and an input string x, the configuration ($\mathrm{s}, \mathrm{x}, \perp$) is called the start configuration of NPDA on x.
- $\mathrm{CF}_{\mathrm{M}}=_{\text {def }} \mathrm{Q} x * x * *$ is the set of all possible configurations for a NPDA M.
- One-step computation ($-->_{\mathrm{M}}$) of a NPDA: $(p, a y, A)-->_{M}(q, y, \quad)$ for each $((p, a, A),(q),) \in$. (1) $(p, y, A)-->_{M}(q, y, \quad)$ for each $((p,, A),(q),) \in$. (2) Let the next configuration relation --> $>_{M}$ on $C F_{M}{ }^{2}$ be the set of pairs of configurations satisfying (1) and (2).
$-->_{\text {M }}$ describes how the machine can move from one configuration to another in one step. (i.e., $C-->_{M} D$ iff D can be reached from C by executing one instruction)
Note: NPDA is nondeterministic in the sense that for each C there may exist multiple D's s.t. C --> M $_{\text {D }}$.
- Given a next configuration relation --> $>_{M}$: Define $-->^{n}{ }_{m}$ and $-->^{*}{ }_{m}$ as usual, i.e.,
$\mathrm{C}->_{\mathrm{M}}^{\mathrm{M}} \mathrm{D}$ iff $\mathrm{C}=\mathrm{D}$.
$C-->{ }^{n+1}{ }_{M}$ iff $E C-->^{n}{ }_{M} E$ and $E-->_{M} D$.
$C->^{*}{ }_{M} D$ iff $n \geq 0 C-->{ }_{M} D$.
i.e., $-->{ }_{M}$ is the ref. and trans. closure of $-->\mathrm{m}$.
- Acceptance: When will we say that an input string x is accepted by an NPDA M?
two possible answers:

1. by final states: M accepts \times (by final state) iff $(s, x, \perp)-->{ }_{M}(p, \quad$) for some final state $p \in F$.
2. by empty stack: M accepts x by empty stack iff $(s, x, \perp)--{ }^{*}{ }_{M}(p$, , for any state p.
Remark: both kinds of acceptance have the same expressive power.

Language accepted by a NPDAs

$\mathrm{M}=(\mathrm{Q}$, , , $, \mathrm{s}, \mathrm{F}):$ a NPDA.
The languages accepted by M is defined as follows:

1. accepted by final state:
$L_{f}(M)=\{x \mid M$ accepts x by final state $\}$

- 2. accepted by empty stack:
$L_{e}(M)=\{x \mid M$ accepts x by empty stack $\}$.

3. Note: Depending on the context, we may sometimes use L_{f} and sometimes use L_{e} as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use $L(M)$ instead of $L_{e}(M)$ or $L_{f}(M)$ to denote the language accepted by M .
-4. In general $L_{e}(M) \neq L_{f}(M)$.

Ex 23.1: M_{1} : A NPDA accepting the set of balanced strings of parentheses [] by empty stack.

- M_{1} requires only one state q and behaves as follows:

1. while input is '[' : push '[' onto the stack ;
2. while input is ']' and top is '[' : pop
3. while input is ' ' and top is \perp : pop.

Formal definition: $\mathrm{Q}=\{\mathrm{q}\},=\{[]\},,=\{[, \perp\}$, start state $=q$, initial stack symbol $=\perp$. $=\{((q,[, \perp),(q,[\perp)),((q,[,[),(q,[[))$,
// 1

$$
\begin{array}{ll}
((q,],[), & (q,)), \\
((q,, \perp), & (q,)) \\
\hline
\end{array}
$$

Transition Diagram representation of the program $\left((p, a A),\left(q, B_{1} \ldots B_{n}\right)\right) \in=$
This machine is not deterministic. Why ?

Example : Execution sequences of M1

- let input $x=[$ [[]] []] []. Then below is a successful computation of M_{1} on x :

(q, [ation

$-->M$ M,
transition (i)
$->_{M}\left(q_{1}\right.$,
$->_{M}\left(q_{1}\right.$,
$->_{M}\left(q_{1}\right.$,
$->_{M}\left(q_{1}\right.$,
$->_{M}\left(q_{1}\right.$,
$->_{M}\left(q_{1}\right.$,
$->_{M}(q$,
$->_{M}\left(q_{1}\right.$
$->_{M}(q$,

accepts by empty stack

」) : the start
[\perp) instruction or transition (ii) transition (ii) transition (iii) transition (iii) transition (ii)
transition (iii) transition (iii) transition (i) transition (iii) transition (iv)

- Note besides the above successful computation, there are other computations that fail.
Ex: (q, [[[]] []] [], \perp) : the start configuration

$$
\begin{array}{ll}
->_{M}(q,[], & \perp) \\
->_{M}(q,[], & \text { transition (iv) }
\end{array}
$$

a dead state at which the input is not empty and we
cannot move further $==>$ failure!!
Note: For a NPDA to accept a string x, we need only one successful computation (i.e., $D=\left({ }^{\prime}\right.$, ,) with empty input and stack s.t. ($\mathrm{s}, \mathrm{x}, \perp$) -->* ${ }_{\mathrm{M}} \mathrm{D}$.))

- Theorem 1: String $x \in\{[,]\}^{*}$ is balanced iff it is accepted by M_{1} by empty stack.

- Definitions:

1. A string x is said to be pre-balanced if $L(y) \geq R(y)$ for all prefixes y of x.
2. A configuration (q, z,) is said to be blocked if the pda M cannot use up input z, i.e., there is no state r and stack such that $(q, z,) \rightarrow *(r, ~, ~)$.

- Facts:

1. If initial configuration (s, z, \perp) is blocked then z is not accepted by M .

- 2. If $(q, z$,$) is blocked then (q, z w, \quad$) is blocked for all $w \in{ }^{*}$.
Pf: 1. If (s, z, \perp) is blocked, then there is no state p, stack such that (s, z, \perp) -->* (p, \quad, \quad), and hence z Is not accepted.

2. Assume ($q, z w$,) is not blocked, then there must exists intermediate cfg $(p, w, \quad$) such that $(q, z w, \quad) \rightarrow(p, w, \quad) \rightarrow \mathrm{k}$,
).But ($q, z w,) \rightarrow(p, w, \quad)$ implies $(q, z,) \rightarrow(p, \quad \prime \prime)$ and (q, z,) is not blocked.

- Lemma 1: For all strings z, x,
- if z is prebalanced then $(q, z x, \perp)-->^{*}(q, x, \perp)$ iff $=[L(z)-R(z)$;
- if z is not prebalanced, (q, z, \perp) is blocked.

Pf: By induction on z.
basic case: $z=$. Then $(q, z x, \perp)=(q, x, \perp) \rightarrow^{0}(q, x, \perp)$ iff $=[L(z)-$ R(z).
inductive case: $z=y a$, where a is '[' or ']'.
case 1: $\mathrm{z}=\mathrm{y}[$.
If y is prebalanced, then so is z. By ind. hyp. $(q, z x, \perp)=(q, y[, \perp)--$ $>^{*}\left(q,\left[x,[L(y)-R(y) \perp)-->\left(q, x,\left[[L(y)-R(y) \perp)=\left(q, x,\left[{ }^{L(z)-R(z)} \perp\right)\right.\right.\right.\right.\right.$.
If y is not prebalanced, then, by ind. hyp., (q, y, \perp) is blocked and hence ($\mathrm{q}, \mathrm{y}[, \perp$) is blocked as well.
case 2: $z=y]$.
If y is not prebalanced, then neither is z. By ind. hyp. (q, y, \perp) is blocked, hence ($q, y], \perp$) is blocked If y is prebalanced and $L(y)=R(y)$. Then z is not prebalanced. By ind. hyp., if $\left.(q, y], \perp)-->^{*}(q],, \perp\right)$ then $=[L(z)-R(z)=$, but then $(q],, \perp)$ is blocked. Hence (q, z, \perp) is blocked.

Finally, if y is prebalanced and $L(y)>R(y)$. Then z is prebalanced, and

$$
\begin{aligned}
(q, y] x, \perp)-->* & (q,] x,[L(y)-R(y) \perp) \\
& -->(q, x,[L(y)-R(y)-1 \perp) \\
& =--(i i i) \\
& =(q, x,[(z)-R(z) \perp)
\end{aligned}
$$

On the other hand, if
($q, y] x, \perp$)-->* (q, x, \perp). Then there must exist a cfg ($q, \quad] x, \quad$) such that
($q, y] x, \perp$)-->* (q,]x,) -->* (q, x, \perp).
But then the intructions executed in the last part must be IV* III IV*.
If ($q] x,$,) $-->_{I V^{*} \mid I I I V^{*}}(q, x, \perp)$, then $=\perp^{m}[\perp \quad \perp$. But by ind. hyp., $\quad=L(y)-R(y) \perp$, hence $m=0, n=0$ and $=L(y)-R(y)-1 \perp$.

Pf [of theorem 1]: Let x be any string.
If x is balanced, then it is prebalanced and $L(x)-R(x)=0$. Hence, by lemma 1, $(q, x, \perp)-->^{*}\left(q,,\left[{ }^{0} \perp\right)-->_{\text {IV }}(q, \quad\right.$,$) . As a result, x$ is accepted.
If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, x, \perp) is blocked and is not accepted.

Another example

- The set $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is known to be not Context-free but its complement

$$
L_{1}=\{a, b\}^{*}-\left\{w w \mid w \in\{a, b\}^{*}\right\} \text { is. }
$$

Exercise: Design a NPDA to accept L_{1} by empty stack.
Hint: $x \in L_{1}$ iff
(1) $|x|$ is odd or
(2) $x=y a z y b z^{\prime}$ or $y b z y a z^{\prime}$ for some $y, z, z^{\prime} \in\{a, b\}^{*}$ with $|z|=\left|z^{\prime}\right|$, which also means
$x=y a y ' u b u^{\prime}$ or $y b y^{\prime} u a u^{\prime}$ for some $y, y^{\prime}, u, u^{\prime} \in$ \{a,b\}*

$$
\text { with }|y|=\left|y^{\prime}\right| \text { and }|u|=\left|u^{\prime}\right| \text {. }
$$

Equivalent expressive power of both types of acceptance

- $M=(Q$, , , $s,, F):$ a PDA

Let u, t : two new states $\notin \mathrm{Q}$ and

- : a new stack symbol \notin.
- Define a new PDA $M^{\prime}=\left(Q^{\prime}\right.$, , ', ', $\left.s^{\prime}, ~, ~ F^{\prime}\right)$ where

$$
\begin{aligned}
& \mathrm{Q}^{\prime}=\mathrm{Q} U\{\mathrm{u}, \mathrm{t}\}, \quad,=\mathrm{U}\{\uparrow\}, \mathrm{s}^{\prime}=\mathrm{u}, \mathrm{~F}^{\prime}=\{\mathrm{t}\} \text { and } \\
& =U\{(u,,)-->(s, \perp)\} / / \text { push } \perp \text { and call } M \\
& U\left\{(f, \quad, A)->(t, A) \mid f \in F \text { and } A \in \quad \text { \} } / * \text { return to } M^{\prime}\right.
\end{aligned}
$$

after reaching final states */
$\mathrm{U}\left\{(\mathrm{t}, \mathrm{A})-->\left(\mathrm{t}, \mathrm{)} \mid \mathrm{A} \in \mathrm{J}^{\prime}\right\} / /\right.$ pop until EmptyStack

- Diagram form relating M and M^{\prime} : see next slide.

Theorem: $L_{f}(M)=L_{e}\left(M^{\prime}\right)$
pf: M accepts $x=>(s, x, \perp) \quad->_{M}^{n_{M}}(q, \quad, \quad$ for some q $\in F$

$$
\begin{aligned}
=> & (u, x,)-->_{M^{\prime}}(s, x, \perp)-->n_{M^{\prime}}(q, \quad \bullet)-->_{M^{\prime}}(t, \\
& \bullet-*_{M^{\prime}}(t,,)=>M^{\prime} \text { accepts } x \text { by empty stack. }
\end{aligned}
$$

From final state to empty stack:

(4) $\xrightarrow{(1,1 *)}$ (s)

M
*: push \perp and call M

+ : return to t of M' once reaching final states of M
++: pop all stack symbols until emptystack

From FinalState to EmptyStack

Conversely, M' accepts x by empty stack
$=>(u, x, *)-->_{M^{\prime}}(s, x, \perp)-->_{M^{\prime}}(q, y, \bullet)-->(t, y, \bullet)$
-->*
(t, \quad, \quad) for some $\mathrm{q} \in \mathrm{F}$
$\Rightarrow y=$ since M^{\prime} cannot consume any input symbol after it enters state t . => M accepts \times by final state.

- Define next new PDA M" = (Q', , ', "'s', •, F') where

$$
\begin{aligned}
& Q^{\prime}=Q U\{u, t\}, \quad{ }^{\prime}=U\{\bullet\}, \quad s^{\prime}=u, \quad F^{\prime}=\{t\} \text { and } \\
& \text { " = U \{ }(\mathrm{u},,) \text {--> (s, } \perp \text {) \} // push } \perp \text { and call M } \\
& \mathrm{U}\left\{(\mathrm{p}, \bullet)->(\mathrm{t}, \mathrm{)} \mid \mathrm{p} \in \mathrm{Q}\} \text { /* return to }^{\mathrm{M}}\right. \text { " and accept } \\
& \text { if EmptyStack */ }
\end{aligned}
$$

- Diagram form relating M and $\mathrm{M}^{\prime \prime}$: See slide 15.

From EmptyStack to FinalState

- Theorem: $\mathrm{L}_{\mathrm{e}}(\mathrm{M})=\mathrm{L}_{\mathrm{f}}\left(\mathrm{M}^{\prime \prime}\right)$.
pf: M accepts $x=>(s, x, \perp) \quad-->_{M}^{n} \quad(q, \quad$,
$\left.=>(u, x, *)-->_{M^{\prime \prime}}(s, x, \perp)--\right\rangle_{M^{\prime \prime}}\left(q, \quad, \quad-->_{M^{\prime \prime}}(t\right.$,
$=>M^{\prime \prime}$ accepts x by final state (and empty stack).
Conversely, $\mathrm{M}^{\prime \prime}$ accepts x by final state (and empty stack)
$=>(u, x, \bullet)-->_{M^{\prime \prime}}(s, x, \perp)-->_{M^{\prime \prime}}\left(q, y, \bullet-->_{M^{\prime \prime}}(t, \quad) f\right.$, some state q in Q
$=>y=$ [and STACK=] since $M^{\prime \prime}$ does not consume any input symbol at the last transition ((q, ,) ($\mathrm{t}, \mathrm{)})$
=> M accepts x by empty stack.
QED

From emptystack to final state (and emptystack)

M'

* : push \perp and call M
+: if emptystack (i.e.see \bullet on stack), then pop * and return to state t of M"

Equivalence of PDAs and CFGs

Every CFL can be accepted by a PDA.
$\mathrm{G}=(\mathrm{N}, \mathrm{P}, \mathrm{S})$: a CFG.
wlog assume all productions of G are of the form:

- $\mathrm{A}->\mathrm{c} \mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \ldots \mathrm{~B}_{\mathrm{k}}(\mathrm{k} \geq 0)$ and $\mathrm{c} \in \mathrm{U}\}$.
- note: 1. A -> satisfies such constraint; 2. can require $\mathrm{k} \leq 2$. Define a PDA $M=(\{q\}, \quad, N, \quad, S,\{ \})$ from G where
q is the only state (hence also the start state),
, the set of terminal symbols of G , is the input alphabet of N N , the set of nonterminals of G , is the stack alphabet of M , S , the start nonterminal of G , is the initial stack symbol of M , \{\} is the set of final states. (hence M accepts by empty stack!!)

$$
=\left\{\left((q, c, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \mid A->c B_{1} B_{2} B_{3} \ldots B_{k} \in P\right\}
$$

Example

- G: 1. S $->$ [B S

2. S -> [B
3. $\mathrm{S}->\quad[\mathrm{S} \mathrm{B}$ 4. $S \rightarrow[S B S$
4. B $->$]
$(q,[, S)-->(q, B S)$
$(q,[, S)->(q, \quad B)$
$==>\quad:(q,[, S)-->(q, S B)$
$(q,[, S)-->(q, S B S)$
$(q], B),-->(q$,

- $L(G)=$ the set of nonempty balanced parentheses.
- leftmost derivation v.s. computation sequence (see next table)
$S L_{-->*_{G}}[[[]][]] \quad<==>(q,[[[]][]], S)-->*_{M}(q$,

rule applied	sentential form of leftmost derivation	configuration of the pda accepting x
	S	(q, [[[]][]], S)
3	S B	(q, l [[[]][]], SB)
4	[S B B B	
2	[[[B B S B	$\underset{\text { BBSB })}{(\mathrm{q},[\mathrm{ll}} \mathrm{l} \text {]][], }$
5	[[[] B S B	(q, [[]]] [], BSB)
5	[[[]] SB	(q, [[[]] []], SB)
2	[[[]] [B B	($\mathrm{q},[$ [[]] [$]$], BB)
	[[[]] []B	(q, , [[]]][]], B)
5	[[[]] []]	(q, , [[]]][]] ,

leftmost derivation v.s. computation

sequence

Lemma 24.1: For any $z, y \in{ }^{*}, \quad \in N^{*}$ and $A \in N$,

$$
A L_{-->n_{G}} z \quad \text { iff }(q, z y, A) \quad-->n_{M}(q, y,)
$$

 pf: By ind. on n.
Basis: $n=0 . A L_{-->O_{G}} z$ af $z=$ and $=A$
iff $(q, z y, A)=(q, y$,$) \quad iff (q, z y, A)-->_{M}^{0}(q, y$,
Ind. case: 1. (only-if part)
Suppose $A L_{-->{ }^{n+1}}^{G} \quad$ and $B->C$ was the last rule applied. le., $A L_{-->n_{G}} u B \quad L_{-->}$bc $=z$ with $z=u c$ and $=$.

Hence ($q, u c y, A)-->{ }_{M}(q, c y, B)$ // by ind. hyp. $->_{M}(q, y, \quad) / / \operatorname{since}((q, c, B),(q)$,

leftmost derivation vs. computation sequence (cont"d)

2. (if-part) Suppose $(q, z y, A)-->^{n+1}{ }_{M}(q, y, \quad)$ and $((q, c, B),(q),) \in \quad$ is the last transition executed. le.,
$(q, z y, A)-->n_{M}(q, c y, \quad)-->_{M}(q, y, \quad)$ with $=$ and $z=$ for some u. But the
$A L_{-}>n_{G} u B \quad / /$ by ind. hyp.,
$L_{-->}$vc $=z \quad / /$ since by def. $B->c \in P$ Hence A ${ }^{L-->{ }^{n+1} G}$ z QED

Theorem 24.2: $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$. pf: $x \in L(G)$ iff $S L_{-->*}^{G} x$
iff $(q, x, S)->_{M}(q, \quad$,
iff $x \in L(M)$. QED

Claim: Every Ianguage accepted by a PDA can be generated by a CFG.

- Proved in two steps:

1. Special case : Every PDA with only one state has an equivalent CFG
2. general case: Every PDA has an equivalent CFG.

- Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
pf: M : a PDA with more than one state.

1. apply step 2 to find an equivalent CFG G
2. apply theorem 24.2 on G, we find an equivalent PDA with only one state.

PDA with only one state has an equivalent

 CFG.- $M=(\{s\}, \quad, \quad, s, \perp,\{ \})$: a PDA with only one state.
Define a CFG $G=(, \quad, P, \perp)$ where

$$
P=\{A->c \quad \mid((q, c, A),(q,)) \in \quad\}
$$

Note: $M==>G$ is just the inverse of the transformation :

$$
\mathrm{G}==>\mathrm{M} \text { defined at slide } 16 .
$$

Theorem: $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.
Pf: Same as the proof of Lemma 24.1 and Theorem
24.2.

- How to simulate arbitrary PDA by CFG ?
- idea: encode all state/stack information in nonterminals !!

Wlog, assume $M=(Q, \quad, \quad, \quad \perp,\{t\})$ be a PDA with only one final state and M can empty its stack before it enters its final state. (The general pda at slide 15 satisfies such constraint.)

Let $\subseteq \mathrm{Q} x \quad \mathrm{x} \mathrm{Q}$. Elements of N are written as $<p A B G q>$.
Define a CFG G $=(\mathrm{N}, \quad,<\mathrm{s} \perp \mathrm{t}>, \mathrm{P})$ where $P=\left\{<p A r>\rightarrow c<q B_{1} B_{2} \ldots B_{k} r>\right.$

$$
\|^{\|}\left((p, c, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in, k \geq 0, c \in U\{
$$

Rules for $<q B_{1} B_{2} \ldots B_{k} r>$

We want $\left\langle\mathrm{qB}_{1} \ldots \mathrm{~B}_{\mathrm{k}} \mathrm{r}>\right.$ to simulate the computation process in PDF M:
$\left(q, \underline{w y}, \underline{B}_{1} \underline{B}_{2} \ldots \underline{B}_{k}\right)|-\ldots|-(r, y, \quad)$ bf $<q B_{1} \ldots B_{k} r>\rightarrow^{*} w$.
Hence: if $k=0$. ie., $\left\langle q B_{1} B_{2} \ldots B_{k} r>=<q r>\right.$, we should have $<q r>\rightarrow \quad$ if $q=r$ and
<qr> has no rule if $q \neq r$.
If $k>1$. Let $B_{1} B_{2} \ldots B_{k}=B_{12}$, then:
$\left\langle\mathrm{qB}_{1}{ }_{2} r>\rightarrow{ }_{u 1 \in Q}<q_{1} u_{1}><\mathrm{u}_{1}{ }_{2} r>\right.$
$\rightarrow \quad u 1 \in Q \quad u 2 \in Q<\mathrm{qB}_{1} u_{1}><\mathrm{u}_{1} \mathrm{~B}_{2} \mathrm{u}_{2}><\mathrm{U}_{2}{ }_{2} r>$
\rightarrow...
$\rightarrow \quad u_{1 \in Q} \quad u 2 \in Q \quad<q B_{1} u_{1}><u_{1} B_{2} u_{2}>\ldots<u_{k-1} B_{k} U_{k}><U_{k} \quad{ }_{k} r>$
$\rightarrow \quad u 1 \in Q \quad u 2 \in Q \quad \cdots \quad<B_{1} u_{1}><u_{1} B_{2} u_{2}>\ldots<u_{k-1} B_{k} r>$

$$
(p, c, A)-->\left(q, B_{1} B_{2} \ldots B_{k}\right)
$$

C $X_{1} X_{2} \ldots$

C $\mathrm{X}_{1} \mathrm{X}_{2} \ldots$

We want to use <pAq> \rightarrow^{*} w to simulate the computation: $(p, w y, A) \rightarrow{ }_{\text {m }}(q, y, \quad)$ So, if $(p, c, A) \rightarrow_{M}(q, \quad)$ we have rules : $<p$ Ar> \rightarrow c $<q \quad r>$ for all states r.

How to derive the rule $<\mathbf{p} \mathbf{A} \mathbf{r}>\rightarrow \mathbf{c}<\mathbf{q}$

 $r>$?How to derive rules for the nonterminal : <q r>

- case 1: $=B_{1} B_{2} B_{3} \ldots B_{n}(n>0)$
- => <q $r>=<q B_{1} Q B_{2} Q B_{3} Q \ldots B_{n} r>$
$\circ=><q \quad r>\rightarrow<q B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots$
- $<q_{n-1} B_{n} r>$ for all states $q_{1}, q_{2}, \ldots, q_{n-1}$ in Q.
- case2: = .
- $q=r=><q \quad r>=<q \quad r>\rightarrow$.
$\circ q!=r=><q \quad r>c a n n o t$ derive any string.
- Then $<p A q>\rightarrow c<q q>=c$.

Simulating PDAs by CFG (cont'd)

Note: Besides storing sate information on the nonterminals, G simulate M by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that th guesses are correct.
Lemma 25.1: ($\left.p, x, B_{1} B_{2} \ldots B_{k}\right)-->{ }^{n} M(q) \quad i f$, $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{k}}(=\mathrm{q})$ such that

$$
<p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>{ }^{L} \rightarrow n_{G} x . \quad(*)
$$

Note: 1. when $k=0 \quad(*)$ is reduced to $\left\langle p q>{ }^{L} \rightarrow n_{G} x\right.$
2. In particular, (p, x, B) $-->{ }^{n} M\left(q\right.$, , iff $<p B q>{ }^{L} \rightarrow n_{G} x$.

Pf: by ind. on n . Basis: $\mathrm{n}=0$.
LHS holds iff ($x=, k=0$, and $p=q$) iff RHS holds.

Simulating PDAs by single-state PDAs

Inductive case:
($=>$:) Suppose ($p, x, B_{1} B_{2} \ldots B_{k}$) $->^{n+1}{ }_{m}(q$, ,) and $\left(\left(p, c_{1} B_{1}\right),\left(r, C_{1} \underline{C}_{2} \ldots C_{m}\right)\right)$ is the first instr. executed. I.e., $\left(p, x, B_{1} B_{2} \ldots B_{k}\right)-->_{M}\left(r, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{k}\right)-->_{M}(q$,$) ,$ where $\mathrm{x}=\mathrm{cy}$.
By ind. hyp., states $r_{1}, . r_{m \times 1},\left(r_{m}=q_{1}\right), q_{2}, \ldots q_{k-1}$ with
$<r C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}>{ }^{L} \rightarrow_{G} y$
Also by the definition of G :
$\leq \mathrm{pB}_{1} \mathrm{a}_{1}>\rightarrow \mathrm{c}<\mathrm{r}_{0} \underline{\mathrm{C}}_{1} \mathrm{r}_{1}><\mathrm{r}_{1} \underline{C}_{2} \mathrm{r}_{2}>\ldots<r_{m-1} \mathrm{C}_{\mathrm{m}} \mathrm{q}_{1} \geq$ is a rule of G.
Combining both, we get:

$$
\begin{aligned}
& <p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}> \\
& \left\llcorner\rightarrow{ }_{G} c<r_{0} C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q_{k}>\right. \\
& \iota_{G} n_{G} c y(=x) .
\end{aligned}
$$

Simulating PDAs by CFGs (cont'd)

(<=:) Suppose $<\mathrm{pB}_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>{ }^{L} \rightarrow^{n+1}{ }_{G} x$.
Let $<p B_{1} q_{1}>\rightarrow c<r_{0} C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}>\in P--(*$) be the first rule applied. ie., Then
$<p B_{1} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} B_{k} q>$
$\stackrel{L}{G}{ }_{G} C<r_{0} C_{1} r_{1}><r_{1} C_{2} r_{2}>\ldots<r_{m-1} C_{m} q_{1}><q_{1} B_{2} q_{2}>\ldots<q_{k-1} E$
${ }^{L} \rightarrow_{G}{ }^{n}$ dy $\quad(=x)$
But then since, by $(*),\left[(p, c, B 1),\left(r_{0}, C_{1} C_{2} \ldots C_{m}\right)\right]-(* *)$ is an M,
$\left(p, x, B_{1} \ldots B_{k}\right)-->_{M}\left(r_{0}, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{n}\right) \quad---B y(* *)$ $-->_{M}(q$,). -- , by ind. hyp. QED
Theorem 25.2 L(G) $=\mathrm{L}(\mathrm{M})$.
Pf: $x \in L(G)$ iff $<s \perp t>\rightarrow^{*} x$
jiff $(\mathrm{s}, \mathrm{x}, \perp) \quad-->_{\mathrm{M}}(\mathrm{t}$, ,) \quad---- Lemma 25.1
iff $x \in L(M)$. QED

- $L=\left\{x \in\{[,]\}^{*} \mid x\right.$ is a balanced string of
[and]], i.e., \#](x) $=2$ \#[(x) and all "]]"s must occur in pairs $\}$
- Ex: []] [[]]]] \in L but [] []]] \notin L.
- L can be accepted by the PDA
$M=(Q, \quad, \quad, p, \perp,\{t\})$, where
$Q=\{p, q, t\}, \quad=\{[]\},,=\{A, B, \perp\}$, and is given as follows:
- $(p,[, \perp)-->(p, A \perp)$,
- (p,[,A) --> (p,AA),
- $(p], A),-->(q$,$) ,$
- $(q], B),-->(p$,$) ,$
- ($\mathrm{p}, \mathrm{a}, \mathrm{m}, \mathrm{d})=-->(\mathrm{t}$,)

M can be simulated by the $\mathrm{CFG} \mathrm{G}=(\mathrm{N}$, , <p $\perp t>$, P) where
$N=\{\langle X D Y\rangle \mid X, Y \in\{p, q, t\}$ and $D \in\{A, B$,
$\perp\}$ \},
and P is derived from the following pseudo rules :
$(p,[, \perp)-->(p, A \perp):<p \perp ?>\rightarrow[\quad<p A \perp ?>$
$\left(p,[, A)-->(p, A A):<p A ?_{1}>\rightarrow\left[\quad<p A ?_{2} A ?_{1}>\right.\right.$
$(p], A,)-->(q, B),:<p A ?>\rightarrow]<q B ?>$
This produce 3 rules ($?=p$ or q or t).
$(q], B,)-->(p),,:<q B ?>\rightarrow]<p$?>
This produces 1 rule:
(? = p, but could not be q or t why ?)
$<q$ B ? > \rightarrow] <p ?> => <qB> \rightarrow] <pp>
$\rightarrow 0$]
$(\mathrm{p}, \mathrm{l}, \mathrm{)}$--> (t,) : <p \perp ? $>\rightarrow<\mathrm{t} \quad$?>
This results in $<p \perp t>\rightarrow \quad($ since $<t \quad t>\rightarrow$.)
$<p \perp$? $>\rightarrow[<p A \perp$? $>\rightarrow$ resulting in 3 rules: ? $=p$, q or t .

$$
\begin{aligned}
& <\mathrm{p} \perp \mathrm{p}>\rightarrow\left[\begin{array}{lll}
<\mathrm{pA} \perp \mathrm{p}> & ---(1) \\
<\mathrm{p} \perp \mathrm{q}>\rightarrow[& <\mathrm{pA} \perp \mathrm{q}> & --(2) \\
<\mathrm{p} \perp \mathrm{t}>\rightarrow\left[\begin{array}{lll}
<p A \perp t> & --(3)
\end{array}\right.
\end{array}\right. \text { (2)}
\end{aligned}
$$

(1) $\sim(3)$ each again need to be expanded into 3 rules.
$<p A \perp p>\rightarrow<p A ?><$? $\perp p>$ where ? is p or q or t.
$<p A \perp q>\rightarrow<p A$? $><$? $\perp q>$ where ? is p or q or t.
$<p A \perp t>\rightarrow<p A ?><$? $\perp t>$ where ? is p or q or t.
$<\mathrm{pA} ?_{1}>\rightarrow\left[\quad<\mathrm{pA} ?_{2} \mathrm{~A} ?_{1}>\right.$ resulting in 9 rules:
Where $?_{2}=p, q$, or t.

$$
\begin{aligned}
& <p \text { A p }>\rightarrow\left[\quad<p A ?_{2}><?_{2} \perp p>--(1)\right. \\
& <p A q>\rightarrow\left[\quad<p A ?_{2}><?_{2} \perp q>--(2)\right. \\
& <\mathrm{pAt}>\rightarrow\left[\quad<\mathrm{pA} ?_{2}><?_{2} \perp \mathrm{t}\right\rangle--(3)
\end{aligned}
$$

