Pushdown Automata and Context-Free Languages

NPDAs

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple
 - $M = (Q,S,G, d,s, \perp, F)$ where
 - Q is a finite set (the states)
 - S is a finite set (the input alphabet)
 - G is a finite set (the stack alphabet)
 - $d \subseteq (Q \times (S \cup \{e\}) \times G) \times (Q \times G^*)$ is the transition relation
 - $s \in Q$ is the start state
 - $\bot \in G$ is the initial stack symbol
 - $F \subseteq Q$ is the final or accept states
- $((p,a,A),(q,B_1B_2...B_k)) \in d \text{ means that}$

whenever the machine is in state p reading input symbol a on the input tape and A on the top of the stack, it pops A off the stack, push $B_1B_2...B_k$ onto the stack (B_k first and B_1 last), move its read head right one cell past the one storing a and enter state q.

 $((p,e,A),(q,B_1B_2...B_k)) \in d \text{ means similar to}$ $((p,a,A),(q,B_1B_2...B_k)) \in d \text{ except that it need not scan and consume any input symbol.}$

Configurations

- Collection of information used to record the snapshot of an executing NPDA
- an element of Q x S* x G*.
- Configuration C = (q, x, w) means
 - the machine is at state q,
 - the rest unread input string is x,
 - the stack content is w.
- Example: the configuration (p, baaabba, ABAC⊥) might describe the situation:

Start configuration and the next configuration relations

- Given a NPDA M and an input string x, the configuration (s, x, ⊥) is called the start configuration of NPDA on x.
- CF_M =_{def} Q x S* x G* is the set of all possible configurations for a NPDA M.
- One-step computation (-->_M) of a NPDA:
 - (p, ay, Ab) $-->_{M}$ (q, y, g \triangleright for each ((p,a,A), (q, g)) \in d. (1)
 - (p, y, Ab) $-->_{M}$ (q, y, g \triangleright for each ((p,e,A),(q, g)) \in d. (2)
 - Let the next configuration relation $->_{\rm M}$ on ${\rm CF}_{\rm M}^2$ be the set of pairs of configurations satisfying (1) and (2).
 - -->_M describes how the machine can move from one configuration to another in one step. (i.e., C -->_M D iff D can be reached from C by executing one instruction)
 - Note: NPDA is nondeterministic in the sense that for each C there may exist multiple D's s.t. C -->_M D.

Multi-step computations and acceptance

- Given a next configuration relation -->_M: Define --->ⁿ_M and --->*_M as usual, i.e.,
 C -->⁰_M D iff C = D.
 C -->ⁿ⁺¹_M iff \$E C-->ⁿ_M E and E-->_M D.
 C -->*_M D iff \$n ≥ 0 C -->ⁿ_M D.
 i.e., --->*_M is the ref. and trans. closure of -->_M.
 Acceptance: When will we say that an input
 - string x is accepted by an NPDA M?
 - two possible answers:
 - 1. by final states: M accepts x (by final state) iff
 - (s,x,⊥) -->*_M (p,e, a) for some final state p ∈ F.
 2. by empty stack: M accepts x by empty stack iff
 - $(s,x, \perp) \rightarrow M$ (p,e, e) for any state p.
 - Remark: both kinds of acceptance have the same expressive power.

Language accepted by a NPDAs

M = (Q, S, G, G, F) : a NPDA.

The languages accepted by M is defined as follows:

- 1. accepted by final state:
- $L_f(M) = \{x \mid M \text{ accepts } x \text{ by final state}\}$
- 2. accepted by empty stack:
- $L_e(M) = \{x \mid M \text{ accepts } x \text{ by empty stack} \}$.
- 3. Note: Depending on the context, we may sometimes use L_f and sometimes use L_e as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use L(M) instead of L_e(M) or L_f(M) to denote the language accepted by M.
- 4. In general $L_e(M) \neq L_f(M)$.

Some example NPDAs

Ex 23.1 : M₁: A NPDA accepting the set of balanced strings of parentheses [] by empty stack. • M₁ requires only one state q and behaves as follows: 1. while input is '[' : push '[' onto the stack ; 2. while input is ']' and top is '[' : pop 3. while input is 'e' and top is \perp : pop. Formal definition: $Q = \{q\}, S = \{[,]\}, G = \{[, \bot]\}, G =$ start state = q, initial stack symbol = \perp . $d = \{ ((q, [, \bot), (q, [\bot)), ((q, [, [), (q, [[)), (q, [])), (q, [])), (q, []), (q,$ // 1 ((q,], [), (q, e)), // 2 ((q,e,⊥), (q, e)) } // 3 Transition Diagram representation of the program d: $((p_{a} A), (q_{B_{1}}...B_{n})) \in d = >$ • This machine is not deterministic. Why ?

$$p \xrightarrow{a,A/B_1...B_n} q$$

Example : Execution sequences of M1

let input x = [[[]] []. Then below is a successful computation of M₁ on x:

Failure computation of M1 on x

 Note besides the above successful computation, there are other computations that fail.

Ex: (q, [[]] []] [], ⊥) : the start configuration

 $-->_{M}^{*}(q, [], \perp)$ $-->_{M}(q, [],)$ transition (iv) a dead state at which the input is not empty and we

cannot move further ==> failure!! Note: For a NPDA to accept a string x, we need *only one successful computation* (i.e., $D = (_, e, e)$ with empty input and stack s.t. $(s,x,\bot) -> *_M D$.

 Theorem 1: String x ∈ {[,]}* is balanced iff it is accepted by M₁ by empty stack.

• Definitions:

- 1. A string x is said to be pre-balanced if $L(y) \ge R(y)$ for all prefixes y of x.
- 2. A configuration (q, z, a) is said to be blocked if the pda M cannot use up input z, i.e., there is no state r and stack b such that (q, z, a) \rightarrow * (r, e, b).

• Facts:

- If initial configuration (s, z, ⊥) is blocked then z is not accepted by M.
- 2. If (q, z, a) is blocked then (q, zw, a) is blocked for all w ∈ S*.

Pf: 1. If (s, z, \bot) is blocked, then there is no state p, stack b such that $(s, z, \bot) \dashrightarrow (p, e, b)$, and hence z Is not accepted.

2. Assume (q, zw, a) is not blocked, then there must exists intermediate cfg (p, w, a') such that (q, zw, a) \rightarrow * (p, w, a') \rightarrow * r(, e, b).But (q, zw, a) \rightarrow * (p, w, a') implies (q, z, a) \rightarrow * (p, e, a'') and (q, z, a) is not blocked.

• Lemma 1: For all strings z,x,

• if z is prebalanced then (q, zx, \perp)-->* (q, x, $a\perp$) iff a = [L(z)-R(z);

- if z is not prebalanced, (q, z, \bot) is blocked.
- Pf: By induction on z.

basic case: z = e. Then $(q, zx, \bot) = (q, x, \bot) \rightarrow^0 (q, x, a \bot)$ iff a = [L(z) - R(z)].

inductive case: z = ya, where a is '[' or ']'.

case 1: z = y[.

If y is prebalanced, then so is z. By ind. hyp. $(q, zx, \bot) = (q, y[, \bot) - > * (q, [x, [^{L(y)-R(y)} \bot) - - > (q, x, [[^{L(y)-R(y)} \bot) = (q, x, [^{L(z)-R(z)} \bot).$

If y is not prebalanced, then, by ind. hyp., (q, y, \bot) is blocked and hence $(q, y[, \bot)$ is blocked as well.

case 2: z = y].

If y is not prebalanced, then neither is z. By ind. hyp. (q, y, \perp) is blocked, hence (q, y], \perp) is blocked

If y is prebalanced and L(y) = R(y). Then z is not prebalanced.

By ind. hyp., if $(q, y], \perp$)-->* $(q,], a\perp$) then a = [L(z)-R(z)] = e, but then $(q,], \perp$) is blocked. Hence (q, z, \perp) is blocked.

Finally, if y is prebalanced and L(y) > R(y). Then z is prebalanced, and

$$(q,y]x,\perp) --> * (q,]x, [L(y)-R(y) \perp) --- ind. hyp$$

--> $(q, x, [L(y)-R(y)-1 \perp) --- (iii)$
= $(q, x, [L(z)-R(z) \perp)$

On the other hand, if

 $(q,y]x,\perp)$ -->* $(q,x, a\perp)$.Then there must exist a cfg (q,]x, b) such that

$$(q,y]x,\perp) -->^{*} (q,]x, b) -->^{*} (q,x, a\perp).$$

But then the intructions executed in the last part must be IV* III IV*. If (q,]x, b) $->_{IV^* III IV^*}$ (q,x, a \perp), then b = $\perp^m [\perp^n a \perp$. But by ind. hyp., b = ${}^{L} (\underline{V})^{-R(y)} \perp$, hence m = 0, n = 0 and a = ${}^{L} (\underline{V})^{-R(y)-1} \perp$.

Pf [of theorem 1] : Let x be any string.

- If x is balanced, then it is prebalanced and L(x) R(x) = 0. Hence, by lemma 1, $(q, xe, \perp) > * (q, e, [^0\perp) - >_{IV} (q, e, e)$. As a result, x is accepted.
- If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, x, \perp) is blocked and is not accepted.

Another example

 The set {ww | w ∈ {a,b}*} is known to be not Context-free but its complement
 L₁ = {a,b}* - {ww | w ∈ {a,b}*} is.

Exercise: Design a NPDA to accept L_1 by empty stack.

Hint:
$$x \in L_1$$
 iff
(1) $|x|$ is odd or
(2) $x = yazybz'$ or $ybzyaz'$ for some $y,z,z' \in \{a,b\}^*$
with $|z|=|z'|$, which also means
 $x = yay'ubu'$ or $yby'uau'$ for some $y,y',u,u' \in \{a,b\}^*$
with $|y|=|y'|$ and $|u|=|u'|$.

Equivalent expressive power of both types of acceptance

• M = (Q,S,G,d,s,F) : a PDALet u, t : two new states \notin Q and • : a new stack symbol \notin G. • Define a new PDA M' = $(Q',S,G',d',s', \bullet, F')$ where • $Q' = Q \cup \{u, t\}, G' = G \cup \{\bullet\}, s' = u, F' = \{t\}$ and • d' = d U { (u,e, \blacklozenge) --> (s, $\bot \blacklozenge$) } // push \bot and call M U { (f, e, A) \rightarrow (t, A) | f \in F and A \in G' } /* return to M' after reaching final states */ U { (t, e, A) \rightarrow (t, e) | A \in G' } // pop until EmptyStack Diagram form relating M and M': see next slide. Theorem: $L_f(M) = L_e(M')$ pf: M accepts $x = > (s, x, \perp) - ->^n_M$ (q, e, g) for some q ∈F $=> (u, x, \bullet) -->_{M'} (s, x, \bot \bullet) -->^{n}_{M'} (q, e, g \bullet) -->_{M'} (t, \bullet)$ e, g ♦)

 $-->*_{M'}$ (t,e, e) => M' accepts x by empty stack.

From final state to empty stack:

<u>*: push ⊥ and call M</u> +: return to t of M' once reaching final states of M ++: pop all stack symbols until emptystack

From FinalState to EmptyStack

Conversely, M' accepts x by empty stack => $(u, x, \bullet) -->_{M'} (s, x, \bot \bullet) -->^*_{M'} (q, y, g \bullet) --> (t, y, g \bullet)$ -->*

(t, e, e) for some $q \in F$

⇒y = e since M' cannot consume any input symbol after it enters state t. => M accepts x by final state.

Define next new PDA M'' = (Q',S,G',d'',S', ◆, F') where
Q' = Q U { u, t}, G' = G U { ◆ }, s' = u, F' = {t} and
d'' = d U { (u,e, ◆) --> (s, ⊥ ◆) } // push ⊥ and call M
U { (p,e, ◆) -> (t, e) | p ∈ Q } /* return to M'' and accept
if EmptyStack */

Diagram form relating M and M'': See slide 15.

From EmptyStack to FinalState

 Theorem: L_e(M) = L_f(M'').
 pf: M accepts x => (s, x, ⊥) -->ⁿ_M (q, e, e) => (u, x, ◆) -->_{M''} (s, x, ⊥◆) -->ⁿ_{M''} (q, e, e♦) -->_{M''} (t, e, => M'' accepts x by final state (and empty stack).

Conversely, M'' accepts x by final state (and empty stack)
=> (u, x, ◆) -->_{M''} (s, x, ⊥♦) -->*_{M''} (q, y, ♦) -->_{M''} (t, e, e) f
some state q in Q
=> y = e [and STACK= e] since M'' does not consume any input
symbol at the last transition ((q, e, ♦), (t, e))
=> M accepts x by empty stack.
QED

From emptystack to final state (and emptystack)

* : push \perp and call M

+: if emptystack (i.e.see ♦ on stack), then pop ♦ and return to state t of M"

Equivalence of PDAs and CFGs

- Every CFL can be accepted by a PDA.
 G = (N, S, P,S) : a CFG.
 - wlog assume all productions of G are of the form:
 - A -> c $B_1B_2B_3...B_k$ (k ≥ 0) and c ∈ S U {e}.
- note: 1. A -> e satisfies such constraint; 2. can require k≤ 2.
 Define a PDA M = ({q}, S, N, d, q, S, {}) from G where
 - q is the only state (hence also the start state),
 - S, the set of terminal symbols of G, is the input alphabet of N
 - N, the set of nonterminals of G, is the stack alphabet of M,
 - S, the start nonterminal of G, is the initial stack symbol of M,
 - {} is the set of final states. (hence M accepts by empty stack!!)
 - $d = \{ ((q,c,A), (q, B_1B_2...B_k)) | A -> c B_1B_2B_3...B_k \in P \}$

Example

• G: 1. S -> [BS (q, [, S) --> (q, BS)2. S -> [B (q, [, S) --> (q, B)3. S-> [SB => d: (q, [, S) --> (q, SB)4. S -> [SBS (q, [, S) --> (q, SB)5. B ->] (q, [, S) --> (q, SBS)(q, [, S) --> (q, SBS) (q, [, S) --> (q, SBS) (q, [, S) --> (q, SBS)

• L(G) = the set of nonempty balanced parentheses.

 leftmost derivation v.s. computation sequence (see next table)

 $S \vdash --> *_{G} [[]]] = -> *_{M} (q, e, e)$

rule applied	sentential form of left- most derivation	configuration of the pda accepting x
	S	(q, [[[]],S)
3	<u>SB</u>	(q, [[[]], SB)
4	[<u>SBS</u> B	(q, <mark>[[[]]]]</mark> , SBSB)
2	[[<u>B</u> BSB	(q, <mark>[[[</mark>]], BBSB)
5	[[[]BSB	(q, [[]], BSB)
5	[[[]]SB	(q, [[]] [], SB)
2	[[[]] <u>[B</u> B	(q, [[[]] []], BB)
	[[[]]B	(q, , [[[]][]], B)
5	[[[]]]]	(q, , [[[]]] ,)

leftmost derivation v.s. computation sequence

Lemma 24.1: For any $z, y \in S^*$, $g \in N^*$ and $A \in N$, $A^{L}-->^{n}_{G} z g$ iff $(q, zy, A) -->^{n}_{M} (q, y, g)$

Ex: $S \stackrel{L}{\longrightarrow} 3_G [[BBSB <==> (q, [[[]]]], S) \rightarrow 3_M (q,]][]], I of: By ind. on n.$ $Basis: n = 0. A <math>\stackrel{L}{\longrightarrow} 3_G z g$ iff z = e and g = Aiff (q, zy, A) = (q, y, g) iff $(q, zy, A) \rightarrow 3_M (q, y, g)$ Ind. case: 1. (only-if part) Suppose A $\stackrel{L}{\longrightarrow} 3_G z g$ and B \rightarrow cb was the last rule applied. I.e., A $\stackrel{L}{\longrightarrow} 3_G uBa \stackrel{L}{\longrightarrow} 3_G uc ba = z g$ with z = uc and g = ba

Hence (q, u cy, A) -->ⁿ_M (q, cy, Ba) // by ind. hyp. -->_M (q, y, ba) // since ((q,c,B),(q, b))

leftmost derivation v.s. computation sequence (cont'd)

2. (if-part) Suppose (q, zy, A) $-->^{n+1}_{M}$ (q, y, g) and ((q,c,B),(q, b)) ∈ d is the last transition executed. I.e.,

 $(q, zy, A) \longrightarrow_{M}^{n} (q, cy, Ba) \longrightarrow_{M} (q, y, ba)$ with g = band z = for some u. But the

A ^L-->ⁿ_G uBa // by ind. hyp., ^L--> uc ba = z g // since by def. B -> c b \in P Hence A ^L-->ⁿ⁺¹_G z g QED

Theorem 24.2:
$$L(G) = L(M)$$
.
pf: $x \in L(G)$ iff $S^{L} - > *_{G}^{K} X$
iff $(q, x, S) - - > *_{M}^{K} (q, e,)e$
iff $x \in L(M)$. QED

Simulating PDAs by CFGs

- Claim: Every language accepted by a PDA can be generated by a CFG.
- Proved in two steps:
 - 1. Special case : Every PDA with only one state has an equivalent CFG
 - 2. general case: Every PDA has an equivalent CFG.

Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
pf: M : a PDA with more than one state.
1. apply step 2 to find an equivalent CFG G
2. apply theorem 24.2 on G , we find an equivalent PDA with only one state.

PDA with only one state has an equivalent CFG.

M = ({s}, S, G, d, s, ⊥, {}) : a PDA with only one state.
 Define a CFG G = (G, S, P, ⊥) where
 P = { A -> cb | ((q, c, A), (q, b)) ∈ d }

Note: M = = > G is just the inverse of the transformation :

G = = > M defined at slide 16.

Theorem: L(G) = L(M). Pf: Same as the proof of Lemma 24.1 and Theorem 24.2.

Simulating general PDAs by CFGs

How to simulate arbitrary PDA by CFG ?
idea: encode all state/stack information in nonterminals !!
Wlog, assume M = (Q, S, G, d, s, ⊥, {t}) be a PDA with only one final state and M can empty its stack before it enters its final state. (The general pda at slide 15 satisfies such constraint.)

Let $N \subseteq Q \ge G^* \ge Q$. Elements of N are written as $< pAB \subseteq q > !$ Define a $CFG = (N, S, < s \perp t >, P)$ where $P = \{ < pAr > \rightarrow c < q B_1 B_2 ... B_k r >$

| ((p,c,A), (q, B₁B₂...B_k)) ∈ d, $k \ge 0$, c ∈ S U {∈

Rules for $\langle q B_1 B_2 ... B_k r \rangle$

We want $\langle qB_1...B_k r \rangle$ to simulate the computation process in PDA M: $(q, wy, B_1B_2...B_kb) |-...|- (r, y, b) iff < qB_1...B_kr > \rightarrow * w.$ Hence: if k = 0. ie., $\langle qB_1B_2...B_kr \rangle = \langle qer \rangle$, we should have $\langle qr \rangle \rightarrow e$ if q = r and $\langle qr \rangle$ has no rule if $q \neq r$. If k > 1. Let $B_1B_2...B_k = B_1D_2$, then : • $< qB_1D_2r > \rightarrow S_{u1e0} < qB_1u_1 > < u_1D_2r >$ $\rightarrow S_{u1\in O} S_{u2\in O} < qB_1u_1 > < u_1B_2u_2 > < u_2D_2r >$ $\bullet \rightarrow \dots$ • $\rightarrow S_{u1\in O} S_{u2\in O} \dots < qB_1u_1 > < u_1B_2u_2 > \dots < u_{k-1}B_kU_k > < U_kD_kr >$ • $\rightarrow S_{u1\in O} S_{u2\in O} \dots < qB_1u_1 > < u_1B_2u_2 > \dots < u_{k-1}B_kr >$

 $\langle p A r \rangle \rightarrow c \langle q a r \rangle$ for all states r.

How to derive the rule $\langle p A r \rangle \rightarrow c \langle q a r \rangle$ r>?

- How to derive rules for the nonterminal : <q a r>
- case 1: a = B₁B₂B₃...B_n (n > 0)
 => <q a r > = <q B₁Q B₂QB₃Q...QB_nr>
 => <q a r > → <q B₁ q₁ > <q₁ B₂ q₂> ...
 <q n-1 B_n r> for all states q₁,q₂,...,q_{n-1} in Q.
 case2: a = e.
 q = r => <q a r> = <q er> → e.
 - \circ q != r => <q er > cannot derive any string.
 - Then $\langle pAq \rangle \rightarrow c \langle qeq \rangle = c$.

Simulating PDAs by CFG (cont'd)

- Note: Besides storing sate information on the nonterminals, G simulate M by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that th guesses are correct.
- Lemma 25.1: $(p, x, B_1 B_2 ... B_k) -->^n_M (q, e,) = iff$ $$q_1, q_2, ... q_k (=q) such that$ $< pB_1 q_1 > < q_1 B_2 q_2 > ... < q_{k-1} B_k q > {}^L \rightarrow {}^n_G x.$ (*)

Note: 1. when k = 0 (*) is reduced to $\langle pq \rangle \ \ \rightarrow^{n}_{G} x$ 2. In particular, $(p, x, B) \ \ - \ >^{n}_{M} (q, e,) \ \ iff \ \ pBq \rangle \ \ \ \rightarrow^{n}_{G} x$. Pf: by ind. on n. Basis: n = 0. LHS holds iff (x = e, k = 0, and p = q) iff RHS holds.

Simulating PDAs by single-state PDAs (cont'd)

Inductive case:

(=>:) Suppose $(p, x, B_1B_2...B_k) \xrightarrow{-->n+1} M (q, e, e)$ and $((p, c, B_1), (r, C_1C_2...C_m))$ is the first instr. executed. I.e., $(p, x, B_1B_2...B_k) \xrightarrow{-->} M (r, y, C_1C_2...C_mB_2...B_k) \xrightarrow{-->n} M (q, e, e)$, where x = cy.

By ind. hyp., \$ states r_1 , r_{m-1} , $(r_m = q_1)$, q_2 ,..., q_{k-1} with $< rC_1r_1 > < r_1C_2r_2 > ... < r_{m-1}C_mq_1 > < q_1B_2q_2 > ... < q_{k-1}B_kq_k > {}^{L} \rightarrow {}^{n}_{G} y$ Also by the definition of G:

 $< pB_1q_1 > \rightarrow c < r_0C_1r_1 > < r_1C_2r_2 > ... < r_{m-1}C_mq_1 >$ is a rule of G. Combining both, we get:

Simulating PDAs by CFGs (cont'd)

(<=:) Suppose $< pB_1q_1 > < q_1 B_2 q_2 > ... < q_{k-1} B_k q > L \rightarrow^{n+1} G X.$ Let $\langle pB_1q_1 \rangle \rightarrow c \langle r_0 C_1 r_1 \rangle \langle r_1 C_2 r_2 \rangle \dots \langle r_{m-1} C_m q_1 \rangle \in P --(*)$ be the first rule applied. i.e., Then $< q_1 B_2 q_2 > ... < q_{k-1} B_k q >$ $L \rightarrow_{G} C < r_{0} C_{1} r_{1} > < r_{1} C_{2} r_{2} > ... < r_{m-1} C_{m} q_{1} > < q_{1} B_{2} q_{2} > ... < q_{k-1} E_{k-1}$ $L \rightarrow G^n$ CY (= X) But then since, by (*), $[(p, c, B1), (r_0, C_1C_2...C_m)] - (**)$ is an M, $(p_1, x_1, B_1, ..., B_k) = ->_M (r_0, y_1, C_1, C_2, ..., C_m, B_2, ..., B_n) = --- By (**)$ -->ⁿ (q,e,)e -- ,by ind. hyp. QED Theorem 25.2 L(G) = L(M). Pf: $x \in L(G)$ iff $\langle s \perp t \rangle \rightarrow x$ iff $(s,x,\perp) -->*_{M}$ (t,e,)e ---- Lemma 25.1 iff $x \in L(M)$. QED

- M can be simulated by the CFG G = (N,S, , P) where
 - N = { <X D Y> | X,Y ∈ {p,q,t} and D ∈ { A,B, ⊥ } },
 - and P is derived from the following pseudo rules :
 - $(p, [, \bot) \rightarrow (p, A\bot) : \langle p \bot ? \rangle \rightarrow [\langle pA\bot ? \rangle$ • $(p, [,A) \rightarrow (p, AA) : \langle pA?_1 \rangle \rightarrow [\langle pA?_2A?_1 \rangle$
 - (p,], A) --> (q, B), $: \rightarrow] < qB?>$
 - This produce 3 rules (? = p or q or t).
 - (q,], B) --> (p, e), : <q B ?> →]
 - This produces 1 rule :
 - (? = p, but could not be q or t why?)
 - <q B ?> →] => <qBp> →] <pep>
 - (p,e, \perp) --> (t,e) : <p \perp ?> \rightarrow <t e ?>

0

0

0

0

0

This results in $\rightarrow e$ (since $<t e t > \rightarrow e$.)

• \rightarrow [$< pA \perp ? > \rightarrow$ resulting in 3 rules : ? = p, q or t.

- $\rightarrow (< pA \perp p > ---(1))$
- $\rightarrow [< pA \perp q > ---(2)$
- $\rightarrow [< pA \perp t > ---(3)$
- (1)~(3) each again need to be expanded into 3 rules.
- $< pA \perp p > \rightarrow < pA? > <? \perp p >$ where ? is p or q or t.
- $< pA \perp q > \rightarrow < pA? > <? \perp q >$ where ? is p or q or t.
- $< pA \perp t > \rightarrow < pA? > <? \perp t >$ where ? is p or q or t.
- < p A ?₁ > \rightarrow [< pA?₂A?₁ > resulting in 9 rules:
- Where $?_2 = p_1q_1$, or t.
- $\rightarrow [< pA?_2 > <?_2 \perp p > ---(1)$
- \rightarrow [2</sub>> <?₂ \perp q> ---(2)
- \rightarrow [2</sub>> <?₂ \perp t> ---(3)