
Pushdown Automata and Context-
Free Languages

NPDAsNPDAs
 A NPDA (Nondeterministic PushDown Automata) is a

7-tuple
M = (Q,S,G, d ,s, , F) where
◦ Q is a finite set (the states)
◦ S is a finite set (the input alphabet)
◦ G is a finite set (the stack alphabet)
◦ d (Q x (S U {e})x G) x (Q x G*) is the transition relation
◦ s Q is the start state
◦ G is the initial stack symbol
◦ F Q is the final or accept states

 ((p,a,A),(q,B1B2…Bk)) d means that
whenever the machine is in state p reading input symbol a on the input
tape and A on the top of the stack, it pops A off the stack, push B1B2…Bk
onto the stack (Bk first and B1 last), move its read head right one cell past
the one storing a and enter state q.

((p,e,A),(q,B1B2…Bk)) d means similar to
((p,a,A),(q,B1B2…Bk)) d except that it need not scan and
consume any input symbol.

ConfigurationsConfigurations
 Collection of information used to record the

snapshot of an executing NPDA
 an element of Q x S* x G*.
 Configuration C = (q, x, w) means

◦ the machine is at state q,
◦ the rest unread input string is x,
◦ the stack content is w.

 Example: the configuration (p, baaabba,
ABAC) might describe the situation:

A
B
A
C

a b a b b a a a b b a

p

Start configuration and the Start configuration and the
next configuration relationsnext configuration relations

 Given a NPDA M and an input string x, the
configuration (s, x,) is called the start
configuration of NPDA on x.

 CFM =def Q x S* x G* is the set of all possible
configurations for a NPDA M.

 One-step computation (-->M) of a NPDA:
◦ (p, ay, Ab) --> M (q, y , g b) for each ((p,a,A), (q, g)) d. (1)
◦ (p, y, Ab) --> M (q, y, g b) for each ((p,e,A),(q, g)) d . (2)
◦ Let the next configuration relation -->M on CFM

2 be the set of
pairs of configurations satisfying (1) and (2).

◦ -->M describes how the machine can move from one
configuration to another in one step. (i.e., C -->M D iff D can
be reached from C by executing one instruction)

◦ Note: NPDA is nondeterministic in the sense that for each C
there may exist multiple D’s s.t. C -->M D.

MultiMulti--step computations and step computations and
acceptanceacceptance
 Given a next configuration relation -->M:

Define --->n
M and --->*M as usual, i.e.,

◦ C -->0
M D iff C = D.

◦ C -->n+1
M iff $ E C-->n

M E and E-->M D.
◦ C -->*M D iff $ n 0 C -->n

M D.
◦ i.e., --->*M is the ref. and trans. closure of --> M .

 Acceptance: When will we say that an input
string x is accepted by an NPDA M?
◦ two possible answers:
◦ 1. by final states: M accepts x (by final state) iff
◦ (s,x,) -->*M (p,e, a) for some final state p F.
◦ 2. by empty stack: M accepts x by empty stack iff
◦ (s,x,) -->*M (p,e, e) for any state p.
◦ Remark: both kinds of acceptance have the same expressive

power.

Language accepted by a NPDAsLanguage accepted by a NPDAs

M = (Q,S,G,d,s,,F) : a NPDA.
The languages accepted by M is defined as follows:

◦ 1. accepted by final state:
◦ Lf(M) = {x | M accepts x by final state}
◦ 2. accepted by empty stack:
◦ Le(M) = {x | M accepts x by empty stack}.
◦ 3. Note: Depending on the context, we may sometimes

use Lf and sometimes use Le as the official definition of the
language accepted by a NPDA. I.e., if there is no worry of
confusion, we use L(M) instead of Le(M) or Lf(M) to denote
the language accepted by M.

◦ 4. In general Le(M) Lf(M).

Some example NPDAsSome example NPDAs

Ex 23.1 : M1: A NPDA accepting the set of balanced
strings of parentheses [] by empty stack.
◦ M1 requires only one state q and behaves as follows:
1. while input is ‘[‘ : push ‘[‘ onto the stack ;
2. while input is ‘]’ and top is ‘[’ : pop
3. while input is ‘e’ and top is : pop.

Formal definition: Q = {q}, S = {[,]}, G = {[, },
start state = q, initial stack symbol = .

d = { ((q,[,), (q, [)), ((q,[, [), (q, [[)),
// 1

((q,], [), (q, e)), // 2
((q,e,), (q, e)) } // 3

Transition Diagram representation of the program d :
((p,a A) , (q,B1…Bn)) d =>

 This machine is not deterministic. Why ?

p qa,A /B1…Bn

Example : Execution sequences of M1Example : Execution sequences of M1

 let input x = [[[]] []] []. Then below is a
successful computation of M1 on x:

 (q, [[[]] []] [],) : the start
configuration
-->M (q, [[]] []] [], [) instruction or

transition (i)
-->M (q, []] []] [], [[) transition (ii)
-->M (q,]] []] [], [[[) transition (ii)
-->M (q,] []] [], [[) transition (iii)
-->M (q, []] [], [) transition (iii)
-->M (q,]] [], [[) transition (ii)
-->M (q,] [], [) transition (iii)
-->M (q, [],) transition (iii)
-->M (q,], [) transition (i)
-->M (q, ,) transition (iii)
-->M (q, ,) transition (iv)

accepts by empty stack

Failure computation of M1 on xFailure computation of M1 on x

 Note besides the above successful computation,
there are other computations that fail.

Ex: (q, [[[]] []] [],) : the start
configuration

-->*M (q, [],)
-->M (q, [],) transition (iv)
a dead state at which the input is not empty and

we
cannot move further ==> failure!!

Note: For a NPDA to accept a string x, we need only
one successful computation (i.e., $ D = (_, e, e) with
empty input and stack s.t. (s,x,) -->*M D.)

 Theorem 1: String x {[,]}* is balanced iff it is
accepted by M1 by empty stack.

 Definitions:
1. A string x is said to be pre-balanced if L(y) R(y) for

all prefixes y of x.
2. A configuration (q, z, a) is said to be blocked if the

pda M cannot use up input z, i.e., there is no state r
and stack b such that (q, z, a) * (r, e, b).

 Facts:
◦ 1. If initial configuration (s, z,) is blocked then z is

not accepted by M.
◦ 2. If (q, z, a) is blocked then (q, zw, a) is blocked for

all w S*.
Pf: 1. If (s, z,) is blocked, then there is no state p, stack b such that

(s, z,) -->* (p, e , b), and hence z Is not accepted.
2. Assume (q, zw, a) is not blocked, then there must exists

intermediate cfg (p, w, a') such that (q, zw, a) * (p, w, a') * (r, e,
b). But (q, zw, a) * (p, w, a') implies (q, z, a) * (p, e , a'') and (q,
z, a) is not blocked.

 Lemma 1: For all strings z,x,
◦ if z is prebalanced then (q, zx,)-->* (q,x, a) iff a = [L(z)-R(z) ;
◦ if z is not prebalanced, (q, z,) is blocked.

Pf: By induction on z.
basic case: z = e. Then (q, zx,) = (q, x,) 0 (q,x, a) iff a = [L(z)-

R(z) .
inductive case: z = ya, where a is '[' or ']'.
case 1: z = y[.
If y is prebalanced, then so is z. By ind. hyp. (q, zx,) = (q,y[,) --
>* (q, [x, [L(y)-R(y)) -->(q, x, [[L(y)-R(y)) =(q, x, [L(z)-R(z)).
If y is not prebalanced, then, by ind. hyp., (q, y,) is blocked and
hence (q, y[,) is blocked as well.
case 2: z = y].
If y is not prebalanced, then neither is z. By ind. hyp. (q, y,) is
blocked, hence (q, y],) is blocked
If y is prebalanced and L(y) = R(y). Then z is not prebalanced.
By ind. hyp., if (q, y],)-->* (q,], a) then a = [L(z)-R(z) = e, but
then (q,],) is blocked. Hence (q, z,) is blocked.

Finally, if y is prebalanced and L(y) > R(y). Then z is prebalanced,
and
(q,y]x,)-->* (q,]x, [L(y)-R(y)) --- ind. hyp

--> (q, x, [L(y)-R(y)-1) --- (iii)
= (q, x, [L(z)-R(z))

On the other hand, if
(q,y]x,)-->* (q,x, a) .Then there must exist a cfg (q,]x, b) such
that
(q,y]x,)-->* (q,]x, b) -->* (q,x, a).
But then the intructions executed in the last part must be IV* III IV*.

If (q,]x, b) -->IV* III IV* (q,x, a), then b = m[na . But by ind.
hyp., b = [L(y)-R(y) , hence m = 0, n = 0 and a = [L(y)-R(y)-1 .

Pf [of theorem 1] : Let x be any string.
If x is balanced, then it is prebalanced and L(x) – R(x) = 0. Hence, by

lemma 1, (q, xe,)-->* (q, e, [0) --> IV (q, e, e). As a result, x is
accepted.

If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, x,)
is blocked and is not accepted.

Another exampleAnother example

 The set {ww | w {a,b}*} is known to be not
Context-free but its complement
L1 = {a,b}* - {ww | w {a,b}*} is.

Exercise: Design a NPDA to accept L1 by empty stack.

Hint: x L1 iff
(1) |x| is odd or
(2) x = yazybz’ or ybzyaz’ for some y,z,z’ {a,b}*

with |z|=|z’|, which also means
x = yay’ubu’ or yby’uau’ for some y,y’,u,u’

{a,b}*
with |y|=|y’| and |u|=|u’|.

Equivalent expressive power of Equivalent expressive power of
both types of acceptanceboth types of acceptance

 M = (Q,S,G,d,s,,F) : a PDA
Let u, t : two new states Q and

 : a new stack symbol G.
 Define a new PDA M’ = (Q’,S,G’,d’,s’, , F’) where

◦ Q’ = Q U {u, t}, G’ = G U { }, s’ = u, F’ = {t} and
◦ d’ = d U { (u,e,) --> (s,) } // push and call M
◦ U { (f, e, A) -> (t,A) | f F and A G’ } /* return to M’
◦ after reaching final states */
◦ U {(t, e,A) --> (t,e) | A G’ } // pop until EmptyStack

 Diagram form relating M and M’: see next slide.
Theorem: Lf(M) = Le(M’)
pf: M accepts x => (s, x,) -->n

M (q, e , g) for some q
 F

=> (u, x,) -->M’ (s, x,) -->n
M’ (q, e , g) -->M’ (t,

e , g)
-->*M’ (t,e, e) => M’ accepts x by empty stack.

From final state to empty stack:From final state to empty stack:

M

s fu t
(e, ,)*

(e,A,A)+

for all As

(e,A, e)++ for all As

M’

*: push and call M
+: return to t of M’ once reaching final states of M
++: pop all stack symbols until emptystack

From From FinalStateFinalState to to EmptyStackEmptyStack

Conversely, M’ accepts x by empty stack
=> (u, x,) -->M’ (s, x,) -->*M’ (q, y, g) --> (t, y, g)

-->*
(t, e , e) for some q F

y = e since M’ cannot consume any input symbol after it
enters state t. => M accepts x by final state.

 Define next new PDA M’’ = (Q’,S,G’,d’’,s’, , F’) where
◦ Q’ = Q U { u, t}, G’ = G U {}, s’ = u, F’ = {t} and
◦ d’’ = d U { (u,e,) --> (s,) } // push and call M
◦ U { (p,e,) -> (t, e) | p Q } /* return to M’’ and accept
◦ if EmptyStack */
◦

 Diagram form relating M and M’’: See slide 15.

From From EmptyStackEmptyStack to to FinalStateFinalState

 Theorem: Le(M) = Lf(M’’).
pf: M accepts x => (s, x,) -->n

M (q, e , e)
=> (u, x,) -->M’’ (s, x,) -->n

M’’ (q, e , e) -->M’’ (t, e ,
=> M’’ accepts x by final state (and empty stack).

Conversely, M’’ accepts x by final state (and empty stack)
=> (u, x,) -->M’’ (s, x,) -->*M’’ (q, y,) -->M’’ (t, e, e) for

some state q in Q
=> y = e [and STACK= e] since M’’ does not consume any input

symbol at the last transition ((q, e ,), (t, e))
=> M accepts x by empty stack.
QED

From From emptystackemptystack to final state (and to final state (and
emptystackemptystack))

M

s fu t
(e, ,)*

(e,, e)+

M’’

(e,, e)+

* : push and call M
+: if emptystack (i.e.see on stack) ,

then pop and return to state t of M’’

Equivalence of PDAs and CFGs Equivalence of PDAs and CFGs

 Every CFL can be accepted by a PDA.
 G = (N, S ,P,S) : a CFG.

◦ wlog assume all productions of G are of the form:
◦ A -> c B1B2B3…Bk (k0) and c S U {e}.
◦ note: 1. A -> e satisfies such constraint; 2. can require k 2.

 Define a PDA M = ({q}, S, N, d, q, S, {}) from G
where
◦ q is the only state (hence also the start state),
◦ S, the set of terminal symbols of G, is the input alphabet of M,
◦ N, the set of nonterminals of G, is the stack alphabet of M,
◦ S, the start nonterminal of G, is the initial stack symbol of M,
◦ {} is the set of final states. (hence M accepts by empty
stack!!)

◦ d = { ((q,c,A), (q, B1B2…Bk)) | A -> c B1B2B3…Bk P }

ExampleExample

 G : 1. S -> [B S (q, [, S) --> (q, B S)
2. S -> [B (q, [, S) --> (q, B)

3. S-> [S B ==> d : (q, [, S) --> (q, S B)
4. S -> [S B S (q, [, S) --> (q, S B S)
5. B ->] (q,], B) --> (q, e)

 L(G) = the set of nonempty balanced parentheses.

 leftmost derivation v.s. computation sequence
(see next table)

S L-->*G [[[]] []] <==> (q, [[[]][]], S) -->*M (q, e, e)

rule applied sentential form of left-
most derivation

configuration of the pda
accepting x

S (q, [[[]] []], S)

3 [S B (q, [[[[]] []], SB)

4 [[S B S B (q, [[[]] []],
SBSB)

2 [[[B B S B (q, [[[]] []],
BBSB)

5 [[[] B S B (q, [[[]] []], BSB)

5 [[[]] S B (q, [[[]] []], SB)

2 [[[]] [B B (q, [[[]] []], BB)

[[[]] [] B (q, , [[[]] []], B)

5 [[[[]] []] (q, , [[[]] []] ,)

leftmost derivation leftmost derivation v.sv.s. computation . computation
sequencesequence

Lemma 24.1: For any z,y S*, g N* and A N,
A L-->n

G z g iff (q, zy, A) -->n
M (q, y , g)

Ex: S L-->3
G [[[BBSB <==> (q, [[[]][]] , S) -->3

M (q,]][]], BBSB)
pf: By ind. on n.
Basis: n = 0. A L-->0

G z g iff z = e and g= A
iff (q, zy, A) = (q, y, g) iff (q, zy, A) -->0

M (q,y,g)
Ind. case: 1. (only-if part)
Suppose A L-->n+1

G z g and B -> cb was the last rule applied.
I.e., A L-->n

G uBa L-->G uc ba = z g with z = uc and g = ba.

Hence (q, u cy, A) -->n
M (q, cy, Ba) // by ind. hyp.

-->M (q, y, ba) // since ((q,c,B),(q, b))

leftmost derivation leftmost derivation v.sv.s. .
computation sequence (cont’d)computation sequence (cont’d)

2. (if-part) Suppose (q, zy, A) -->n+1
M (q, y, g) and

((q,c,B),(q, b)) d is the last transition executed. I.e.,

(q, zy, A) -->n
M (q, cy, Ba) -->M (q, y, ba) with g = baand z = uc

for some u. But then
A L-->n

G uBa // by ind. hyp.,
L--> uc ba = z g // since by def. B -> c b P

Hence A L-->n+1
G z g QED

Theorem 24.2: L(G) = L(M).
pf: x L(G) iff S L-->*G x

iff (q, x, S) -->*M (q, e, e)
iff x L(M). QED

Simulating PDAs by CFGsSimulating PDAs by CFGs

Claim: Every language accepted by a PDA can
be generated by a CFG.

 Proved in two steps:
◦ 1. Special case : Every PDA with only one state has
an equivalent CFG

◦ 2. general case: Every PDA has an equivalent CFG.

 Corollary: Every PDA can be minimized to an
equivalent PDA with only one state.

pf: M : a PDA with more than one state.
1. apply step 2 to find an equivalent CFG G
2. apply theorem 24.2 on G , we find an

equivalent PDA with only one state.

PDA with only one state has an equivalent PDA with only one state has an equivalent
CFG.CFG.

 M = ({s}, S, G, d, s, , {}) : a PDA with only one
state.
Define a CFG G = (G, S, P,) where

P = { A -> cb | ((q, c, A), (q, b)) d }

Note: M ==> G is just the inverse of the
transformation :

G ==> M defined at slide 16.

Theorem: L(G) = L(M).
Pf: Same as the proof of Lemma 24.1 and Theorem
24.2.

Simulating general PDAs by CFGsSimulating general PDAs by CFGs

 How to simulate arbitrary PDA by CFG ?
◦ idea: encode all state/stack information in nonterminals !!

Wlog, assume M = (Q, S, G, d, s, , {t}) be a PDA
with only one final state and M can empty its stack
before it enters its final state. (The general pda at
slide 15 satisfies such constraint.)

Let N Q x G* x Q . Elements of N are written as
<pABCq>.

Define a CFG G = (N, S, <st>, P) where
P = { <pAr> c <q B1 B2 …Bk r>

| ((p,c,A), (q, B1B2…Bk)) d, k 0, c S U {e},
r Q }

Rules for <q BRules for <q B11 BB22 ……BBkk r> r>

We want <qB1…Bk r > to simulate the computation process in
PDA M:

(q, wy, B1B2…Bkb) |-…|- (r, y, b) iff <qB1…Bkr> * w.

Hence: if k = 0. ie., <qB1B2…Bkr> = <qer>, we should have
<qr> e if q = r and
<qr> has no rule if q ≠ r.

If k > 1. Let B1B2…Bk = B1D2 , then :
 <qB1D2r > Su1∈Q <qB1u1> <u1D2r>
 Su1∈Q Su2∈Q <qB1u1> <u1B2u2> <u2D2r>
 …
 Su1∈Q Su2∈Q … <qB1u1><u1B2u2>…<uk-1BkUk><UkDkr>
 Su1∈Q Su2∈Q … <qB1u1><u1B2u2>…<uk-1Bk r>

(p, c, A) --> (q, B1B2...Bk)

A
C

p

c x1x2...

t
t1
t2

t2
t1

p

Bk-1

Bk

C

q

c x1x2...

B1

B2

t
t1

t1
t2

qk=t2qk-1

qk-1

q1

q1 q2
q2

q

We want to use <pAq> * w to simulate
the computation: (p, wy, Ab) *M (q, y, eb)
So, if (p,c,A) M (q, a) we have rules :
<p A r> c <q a r> for all states r.

How to derive the rule How to derive the rule <p A r> <p A r> c <q c <q aa
r>r> ??

How to derive rules for the nonterminal : <q a
r>

 case 1: a = B1B2B3…Bn (n > 0)
◦ => <q a r > = <q B1Q B2QB3Q…QBnr>
◦ => <q a r > <q B1 q1 > <q1 B2 q2> …
◦ <q n-1 Bn r> for all states q1,q2,…,q n-1 in Q.

 case2: a = e.
◦ q = r => <q a r> = <q e r> e.
◦ q != r => <q e r > cannot derive any string.

◦ Then <pAq> c <qeq> = c.

Simulating PDAs by CFG (cont’d)Simulating PDAs by CFG (cont’d)

 Note: Besides storing sate information on the nonterminals, G
simulate M by guessing nondeterministically what states M will
enter at certain future points in the computation, saving its
guesses on the sentential form, and then verifying later that those
guesses are correct.

Lemma 25.1: (p,x,B1B2…Bk) -->n
M (q,e,e) iff

$ q1,q2,…qk (=q) such that
<pB1q1><q1B2q2>…<qk-1Bkq> Ln

G x. (*)

Note: 1. when k = 0 (*) is reduced to <pq> Ln
G x

2. In particular, (p,x,B) -->n
M (q,e,e) iff <pBq> Ln

G x.
Pf: by ind. on n. Basis: n = 0.

LHS holds iff (x = e, k = 0, and p = q) iff RHS holds.

Simulating PDAs by singleSimulating PDAs by single--state PDAs state PDAs
(cont’d)(cont’d)

Inductive case:
(=>:) Suppose (p,x,B1B2…Bk) -->n+1

M (q,e,e) and
((p,c,B1),(r,C1C2…Cm)) is the first instr. executed. I.e.,
(p,x,B1B2…Bk) -->M (r, y, C1C2…CmB2…Bk) -->n

M (q,e,e),
where x = cy.

By ind. hyp., $ states r1,...,rm-1,(rm= q1), q2,… qk-1 with
<rC1r1><r1C2r2>...<rm-1Cmq1><q1B2q2>…<qk-1Bkqk> Ln

G y
Also by the definition of G:
<pB1q1> c <r0C1r1><r1C2r2>...<rm-1Cmq1> is a rule of G.

Combining both, we get:
<pB1q1> <q1B2q2> …<q k-1Bkqk>
LG c <r0C1r1><r1C2r2>...<rm-1Cmq1> <q1B2q2> …<qk-1Bkqk>
Ln

G c y (= x).

Simulating PDAs by CFGs (cont’d)Simulating PDAs by CFGs (cont’d)

(<=:) Suppose <pB1q1><q1 B2 q2>…<q k-1 Bk q> Ln+1
G x.

Let <pB1q1> c <r0 C1 r1> <r1 C2 r2>... <rm-1 Cm q1> P --(*)
be the first rule applied. i.e., Then

<p B1 q1> <q1 B2 q2> …<q k-1 Bkq>
LG c <r0 C1 r1> <r1 C2 r2>... <rm-1 Cm q1> <q1 B2 q2> … <qk-1B
LG

n cy (= x)
But then since, by (*), [(p, c, B1) , (r0, C1C2…Cm)] – (**) is an instr of

M,
(p,x,B1…Bk) -->M (r0, y, C1C2…CmB2…Bn) --- By (**)

-->n
M (q,e,e). -- ,by ind. hyp. QED

Theorem 25.2 L(G) = L(M).
Pf: x L(G) iff <st> * x

iff (s,x,) -->*M (t,e,e) ---- Lemma 25.1
iff x L(M). QED

ExampleExample

 L = {x {[,]}* | x is a balanced string of
[and]], i.e., #](x) = 2 #[(x) and all “]]“s must
occur in pairs }

 Ex: []] [[]]]] ∈ L but [] []]] ∉ L.
 L can be accepted by the PDA
M = (Q, S, G, d, p, ,{t}), where
Q = {p,q,t}, S = {[,]}, G = {A, B, },
and d is given as follows:
◦ (p, [,) --> (p, A),
◦ (p,[,A) --> (p,AA),
◦ (p,], A) --> (q, e),
◦ (q,], B) --> (p, e),
◦ (p,e,) --> (t,e) tq

p

],B/e

e,/e

[,A/AA
[,/A

],A/B

 M can be simulated by the CFG G = (N,S,
<pt>, P) where
◦ N = { <X D Y> | X,Y {p,q,t} and D { A,B,

 } },
◦ and P is derived from the following pseudo rules :
◦ (p, [,) --> (p, A) : <p ?> [<pA?>
◦ (p,[,A) --> (p,AA) : <p A ?1> [<pA?2A?1>
◦ (p,], A) --> (q, B), : <p A ?>] <qB?>
◦ This produce 3 rules (? = p or q or t).
◦ (q,], B) --> (p, e), : <q B ?>] <p e ?>
◦ This produces 1 rule :
◦ (? = p, but could not be q or t why ?)
◦ <q B ?>] <p e ?> => <qBp>] <pep>
0]

◦ (p,e,) --> (t,e) : <p?> <t e ?>
◦ This results in <pt> e (since <t e t> e.)

◦ <p ?> [<pA?> resulting in 3 rules : ? = p,
q or t.

◦ <p p> [<pAp> ---(1)
◦ <p q> [<pAq> ---(2)
◦ <p t> [<pAt> ---(3)
◦ (1)~(3) each again need to be expanded into 3
rules.

◦ <pAp> <pA?><? p> where ? is p or q or t.
◦ <pAq> <pA?><? q> where ? is p or q or t.
◦ <pA t> <pA?><? t> where ? is p or q or t.
◦ <p A ?1> [<pA?2A?1> resulting in 9 rules:
◦ Where ?2 = p,q, or t.
◦ <p A p> [<pA?2> <?2p> ---(1)
◦ <p A q> [<pA?2> <?2q> ---(2)
◦ <p A t> [<pA?2> <?2t> ---(3)

