
Pushdown Automata and Context-
Free Languages



NPDAsNPDAs
 A NPDA (Nondeterministic PushDown Automata) is a 

7-tuple
M = (Q,S,G, d ,s,  , F) where
◦ Q is a finite set (the states)
◦ S is a finite set (the input alphabet)
◦ G is a finite set (the stack alphabet)
◦ d  (Q x (S U {e})x G) x (Q x G*) is the transition relation
◦ s  Q is the start state
◦   G is the initial stack symbol
◦ F  Q is the final or accept states

 ((p,a,A),(q,B1B2…Bk))  d means that
whenever the machine is in state p reading input symbol a on the input 
tape and A on the top of the stack, it pops A off the stack, push B1B2…Bk
onto the stack (Bk first and B1 last), move its read head right one cell past 
the one storing a and enter state q.

((p,e,A),(q,B1B2…Bk))  d means similar to 
((p,a,A),(q,B1B2…Bk))  d except that it need not scan and 
consume any input symbol. 



ConfigurationsConfigurations
 Collection of information used to record the 

snapshot of an executing NPDA
 an element of Q x S* x G*.
 Configuration C = (q, x, w) means

◦ the machine is at state q,
◦ the rest unread input string is x,
◦ the stack content is w.

 Example: the configuration (p, baaabba, 
ABAC) might describe the situation:

A
B
A
C


a  b  a  b  b  a  a  a  b  b   a

p



Start configuration and the Start configuration and the 
next configuration relationsnext configuration relations

 Given a NPDA M and an input string x, the 
configuration  (s, x,  ) is called the start 
configuration of NPDA on x.

 CFM =def Q x S* x G* is the set of all possible 
configurations for a NPDA M.

 One-step computation ( -->M ) of a NPDA:
◦ (p, ay, Ab) --> M (q, y , g b)  for each ((p,a,A), (q, g ))  d.   (1)
◦ (p, y,  Ab)  --> M (q, y, g b)   for each ((p,e,A),(q, g ))  d .  (2)
◦ Let the next configuration relation -->M on CFM

2  be the set of 
pairs of configurations satisfying (1) and (2).

◦ -->M describes how the machine can move from one 
configuration to another in one step. (i.e., C -->M D iff D can 
be reached from C by executing one instruction)

◦ Note: NPDA is nondeterministic in the sense that for each C 
there may exist multiple D’s s.t. C -->M D.  



MultiMulti--step computations and step computations and 
acceptanceacceptance
 Given a next configuration relation -->M:

Define --->n
M and --->*M as usual, i.e.,

◦ C -->0
M D  iff C = D.

◦ C -->n+1
M iff $ E C-->n 

M E and E-->M D.
◦ C -->*M D  iff $ n  0 C -->n

M D.
◦ i.e., --->*M is the ref. and trans. closure of --> M .

 Acceptance: When will we say that an input 
string x is accepted by an NPDA M?
◦ two possible answers:
◦ 1. by final states: M accepts x ( by final state) iff
◦ (s,x,  ) -->*M (p,e, a) for some final state p  F.
◦ 2. by empty stack: M accepts x by empty stack iff
◦ (s,x, ) -->*M (p,e, e) for any state p.
◦ Remark: both kinds of acceptance have the same expressive 

power.



Language accepted by a NPDAsLanguage accepted by a NPDAs

M = (Q,S,G,d,s,,F) : a NPDA.
The languages accepted by M is defined as follows:

◦ 1. accepted by final state:
◦ Lf(M) = {x | M accepts x by final state}
◦ 2. accepted by empty stack: 
◦ Le(M) = {x | M accepts x by empty stack}.
◦ 3. Note: Depending on the context, we may sometimes 

use Lf and sometimes use Le as the official definition of the 
language accepted by a NPDA.  I.e., if there is no worry of 
confusion, we use L(M) instead of Le(M) or Lf(M) to denote 
the language accepted by M.

◦ 4. In general Le(M)  Lf(M).



Some example NPDAsSome example NPDAs

Ex 23.1 : M1: A NPDA accepting the set of balanced 
strings of parentheses [ ] by empty stack.
◦ M1 requires only one state q  and behaves as follows:
1. while input is ‘[‘  :             push ‘[‘ onto the stack ;
2. while input is ‘]’ and top is ‘[’ : pop
3. while input is ‘e’ and top is  :  pop.

Formal definition:  Q = {q}, S = {[,]}, G = {[,  }, 
start state = q,  initial stack symbol = .

d = {  ( (q,[, ), (q, [) ),   ( (q,[, [), (q, [[) ),   
// 1

( (q,], [),  (q, e) ),       // 2 
( (q,e, ), (q, e) )  }   // 3

Transition Diagram representation of the program d : 
((p,a A) , (q,B1…Bn)) d  =>  

 This machine is not deterministic. Why ?               

p qa,A /B1…Bn



Example : Execution sequences of M1Example : Execution sequences of M1

 let input x  = [ [ [ ] ] [ ] ] [ ].  Then below is a 
successful computation of M1 on x:

 (q, [ [ [ ] ] [ ] ] [ ],        )   : the start 
configuration
-->M (q,    [ [ ] ] [ ] ] [ ],      [ )    instruction or 

transition (i)
-->M (q,       [ ] ] [ ] ] [ ],    [ [ )        transition (ii) 
-->M (q,         ] ] [ ] ] [ ],  [ [ [ )        transition (ii)
-->M (q,           ] [ ] ] [ ],   [ [ )       transition (iii)
-->M (q,             [ ] ] [ ],       [)       transition (iii)
-->M (q,               ] ] [ ],    [ [ )       transition (ii)
-->M (q,                 ] [ ],      [ )       transition (iii)
-->M (q,                    [ ],       )       transition (iii)
-->M (q,                      ],     [ )       transition (i)
-->M (q,                       ,       )       transition (iii)
-->M (q,                       ,        )       transition (iv)

accepts by empty stack



Failure computation of M1 on xFailure computation of M1 on x

 Note besides the above successful computation, 
there are other computations that fail.

Ex:  (q, [ [ [ ] ] [ ] ] [ ],        )   : the start 
configuration

-->*M (q, [ ],       ) 
-->M (q,   [ ],         )     transition (iv) 
a dead state at which the input is not empty and 

we
cannot move further ==> failure!!

Note: For a NPDA to accept a string x, we need only 
one successful computation (i.e., $ D = (_, e, e) with 
empty input and stack s.t. (s,x,) -->*M D.  )

 Theorem 1:  String x  {[,]}* is balanced iff it is 
accepted by M1 by empty stack.



 Definitions:
1. A string x is said to be pre-balanced if L(y)  R(y) for 

all prefixes y of x.
2. A configuration (q, z, a) is said to be blocked if the 

pda M cannot use up input z, i.e., there is no state r 
and stack b such that (q, z, a) * (r, e, b).

 Facts:
◦ 1. If initial configuration (s, z, ) is blocked then z is 

not  accepted by M.
◦ 2. If (q, z, a) is blocked then (q, zw, a) is blocked for 

all w  S*.
Pf: 1. If (s, z, ) is blocked, then there is no state p, stack b such that 

(s, z, ) -->* (p, e , b), and hence z Is not accepted.
2. Assume (q, zw, a)  is not blocked, then there must exists 

intermediate cfg (p, w, a') such that (q, zw, a ) * (p, w, a') * (r, e, 
b). But (q, zw, a ) * (p, w, a')  implies (q, z, a ) * (p, e , a'')  and (q, 
z, a) is not blocked.



 Lemma 1: For all strings z,x, 
◦ if z is prebalanced then (q, zx,)-->* (q,x, a ) iff a = [L(z)-R(z) ; 
◦ if z is not prebalanced, (q, z, ) is blocked.

Pf: By induction on z.
basic case: z = e. Then (q, zx,) = (q, x,) 0 (q,x, a ) iff a = [L(z)-

R(z) .
inductive case: z = ya, where a is '[' or ']'.
case 1:  z = y[.  
If y is prebalanced, then so is z. By ind. hyp. (q, zx, ) = (q,y[, ) --
>* (q, [x, [L(y)-R(y) ) -->(q, x, [[L(y)-R(y) ) =(q, x, [L(z)-R(z)  ).
If y is not prebalanced, then, by ind. hyp., (q, y, )  is blocked and 
hence (q, y[, ) is blocked as well.
case 2:  z = y]. 
If y is not prebalanced, then neither is z. By ind. hyp. (q, y, ) is 
blocked, hence (q, y], ) is blocked
If y is prebalanced and L(y) = R(y). Then z is not prebalanced.
By ind. hyp., if (q, y],)-->* (q,], a ) then a = [L(z)-R(z) = e, but 
then (q,], ) is blocked. Hence (q, z,)  is blocked.



Finally, if y is prebalanced and L(y) > R(y). Then z is prebalanced, 
and
(q,y]x,)-->* (q,]x, [L(y)-R(y)  )   --- ind. hyp

-->  (q, x, [L(y)-R(y)-1 ) --- (iii)
=   (q, x, [L(z)-R(z) ) 

On the other hand, if 
(q,y]x,)-->* (q,x, a ) .Then there must exist a cfg (q, ]x, b ) such 
that
(q,y]x,)-->* (q, ]x, b)   -->* (q,x, a ).
But then the intructions executed in the last part must be IV* III IV*.

If (q, ]x, b)  -->IV* III IV* (q,x, a ), then b = m[ na . But by ind. 
hyp., b = [L(y)-R(y)  , hence m = 0, n = 0 and  a = [L(y)-R(y)-1 .

Pf [of theorem 1] : Let x be any string.
If x is balanced, then it is prebalanced and L(x) – R(x) = 0. Hence, by 

lemma 1,  (q, xe,)-->* (q, e, [0 ) --> IV (q, e, e).  As a result, x is 
accepted.

If x is not balanced, it is not prebalanced. Hence, by lemma 1, (q, x,) 
is blocked and is not accepted. 



Another exampleAnother example

 The set {ww | w  {a,b}*} is known to be not 
Context-free but its complement 
L1 =  {a,b}* - {ww | w  {a,b}*}     is.

Exercise: Design a NPDA to accept L1 by empty stack.

Hint:  x  L1 iff
(1)   |x| is odd or
(2)   x = yazybz’ or ybzyaz’ for some y,z,z’  {a,b}* 

with |z|=|z’|, which also means
x = yay’ubu’ or yby’uau’ for some y,y’,u,u’ 

{a,b}* 
with |y|=|y’| and |u|=|u’|.



Equivalent expressive power of Equivalent expressive power of 
both types of acceptanceboth types of acceptance

 M = (Q,S,G,d,s,,F) : a PDA 
Let u, t : two new states  Q and 

 : a new stack symbol  G.
 Define a new PDA M’ = (Q’,S,G’,d’,s’, , F’) where

◦ Q’ = Q U {u, t},   G’ = G U { },   s’ = u,    F’ = {t} and
◦ d’ = d U  { (u,e,  ) --> (s, )  }  // push  and call M
◦ U { (f, e, A) -> (t,A) | f  F and A  G’ } /*  return to M’
◦ after reaching final states  */
◦ U {(t, e,A) --> (t,e) | A  G’ } // pop until EmptyStack

 Diagram form relating M and M’: see next slide.
Theorem: Lf(M) = Le(M’)
pf: M accepts x => (s, x,  )  -->n

M (q, e , g) for some q 
 F

=> (u, x,  ) -->M’ (s, x,  ) -->n
M’ (q, e , g) -->M’ (t, 

e , g)  
-->*M’ (t,e, e )   => M’ accepts x by empty stack.



From final state to empty stack:From final state to empty stack:

M

s fu t
(e, , )*

(e,A,A)+

for all As

(e,A, e)++ for all As

M’

*: push  and call M
+: return to t of M’ once reaching final states of M
++: pop all stack symbols until emptystack



From From FinalStateFinalState to to EmptyStackEmptyStack

Conversely, M’ accepts x by empty stack 
=>  (u, x,  ) -->M’ (s, x,  ) -->*M’ (q,  y, g) --> (t, y, g)  

-->* 
(t, e , e )  for some q  F 

y = e since M’ cannot consume any input symbol after it 
enters state t. => M accepts x by final state.

 Define next new PDA M’’ = (Q’,S,G’,d’’,s’, , F’) where
◦ Q’ = Q U { u, t},   G’ = G U {},   s’ = u,    F’ = {t} and
◦ d’’ = d U  { (u,e,  ) --> (s, )  }  // push  and call M
◦ U { (p,e,) -> (t, e) | p  Q  } /*  return to M’’ and accept
◦ if EmptyStack */
◦

 Diagram form relating M and M’’:  See slide 15.



From From EmptyStackEmptyStack to to FinalStateFinalState

 Theorem: Le(M) = Lf(M’’).
pf: M accepts x => (s, x,  )  -->n

M (q, e , e) 
=> (u, x,  ) -->M’’ (s, x,  ) -->n

M’’ (q, e , e) -->M’’ (t, e , 
=> M’’ accepts x by final state (and empty stack).

Conversely, M’’ accepts x by final state (and empty stack)
=>  (u, x,  ) -->M’’ (s, x,  ) -->*M’’ (q,  y, ) -->M’’ (t, e, e )  for

some state q in Q 
=> y = e [and STACK= e] since M’’ does not consume any input 

symbol at the last  transition ((q, e ,  ), (t, e)) 
=> M accepts x by empty stack.
QED



From From emptystackemptystack to final state (and to final state (and 
emptystackemptystack))

M

s fu t
(e, , )*

(e,, e)+

M’’

(e,, e)+

* : push  and call M
+: if  emptystack (i.e.see  on stack) , 

then pop  and return to state t of M’’



Equivalence of PDAs and CFGs Equivalence of PDAs and CFGs 

 Every CFL can be accepted by a PDA.
 G = (N, S ,P,S) : a CFG.

◦ wlog assume all productions of G are of the form:
◦ A -> c B1B2B3…Bk ( k0) and c  S U {e}.
◦ note: 1. A -> e satisfies such constraint; 2. can require k 2.

 Define a PDA M = ({q}, S, N, d, q, S, {}) from G 
where
◦ q is the only state (hence also the start state),
◦ S, the set of terminal symbols of G, is the input alphabet of M,
◦ N, the set of nonterminals of G, is the stack alphabet of M,
◦ S, the start nonterminal of G, is the initial stack symbol of M,
◦ {} is the set of final states. (hence M accepts by empty 
stack!!)

◦ d = {  ((q,c,A), (q, B1B2…Bk))  | A -> c B1B2B3…Bk  P }



ExampleExample

 G :  1. S -> [ B S (q, [, S) --> (q, B S)
2. S  -> [ B (q, [, S) --> (q,    B )

3. S->   [ S B          ==> d : (q, [, S) --> (q, S B)
4. S -> [ S B S (q, [, S) --> (q, S B S)
5. B -> ] (q, ], B) --> (q, e)

 L(G) = the set of nonempty balanced parentheses.

 leftmost derivation v.s. computation sequence 
(see next table)

S L-->*G [ [ [ ] ] [ ] ]    <==> (q, [[[]][]], S)  -->*M (q, e, e)



rule applied sentential form of left-
most derivation

configuration of the pda
accepting x

S (q,               [ [ [ ] ]  [ ] ], S  )

3 [  S  B (q, [ [[ [ ] ]  [ ] ], SB  )

4 [  [ S B S B (q, [ [ [ ] ]  [ ] ], 
SBSB )

2 [  [   [ B B S B (q,  [ [ [ ] ]  [ ] ], 
BBSB  )

5 [  [  [   ] B S B (q, [ [ [ ] ]  [ ] ], BSB  )

5 [  [  [  ]   ] S B (q, [ [ [ ] ]               [ ] ], SB  )

2 [  [  [  ]  ]  [  B B (q, [ [ [ ] ]  [             ] ], BB  )

[  [  [  ]  ]  [ ] B (q, , [ [ [ ] ] [ ]               ], B  )

5 [  [  [ [  ]  ]  [  ]  ] (q, , [ [ [ ] ] [ ] ]                   , )



leftmost derivation leftmost derivation v.sv.s. computation . computation 
sequencesequence

Lemma 24.1: For any z,y  S*, g N* and A  N,
A L-->n

G z g iff  (q, zy, A)  -->n
M (q, y , g)

Ex: S L-->3
G [ [ [ BBSB   <==> (q, [[[ ]][]] , S) -->3

M (q, ]][]], BBSB)
pf: By ind. on n.
Basis: n = 0. A L-->0

G z g iff    z = e and g= A
iff (q, zy, A) = (q, y, g)     iff   (q, zy, A) -->0

M (q,y,g)
Ind. case: 1. (only-if part)
Suppose A L-->n+1

G z g and B -> cb was the last rule applied.
I.e.,    A L-->n

G uBa L-->G uc ba = z g with z = uc and g = ba.

Hence  (q, u cy, A ) -->n
M (q, cy, Ba)   // by ind. hyp.

-->M (q, y, ba)   // since ((q,c,B),(q, b)) 



leftmost derivation leftmost derivation v.sv.s. . 
computation sequence (cont’d)computation sequence (cont’d)

2.  (if-part)  Suppose     (q, zy, A) -->n+1
M (q, y, g) and 

((q,c,B),(q, b))  d is the last transition executed.  I.e.,

(q, zy, A) -->n
M ( q, cy, Ba) -->M (q, y, ba) with g = baand z = uc  

for some u.  But then
A L-->n

G uBa // by ind. hyp.,
L-->   uc ba = z g // since by def. B -> c b  P  

Hence A L-->n+1
G z g   QED 

Theorem 24.2: L(G) = L(M).
pf:  x  L(G) iff S L-->*G x 

iff  (q, x, S) -->*M (q, e, e) 
iff  x  L(M).    QED



Simulating PDAs by CFGsSimulating PDAs by CFGs

Claim: Every language accepted by a PDA can 
be generated by a CFG.

 Proved in two steps:
◦ 1. Special case : Every PDA with only one state has 
an equivalent CFG

◦ 2. general case: Every PDA has an equivalent CFG.

 Corollary: Every PDA can be minimized to an 
equivalent PDA with only one state.

pf: M : a PDA with more than one state.
1. apply step 2 to find an equivalent CFG G
2. apply theorem 24.2 on G , we find an 

equivalent PDA with  only one state. 



PDA with only one state has an equivalent PDA with only one state has an equivalent 
CFG.CFG.

 M = ({s}, S, G, d, s, , {}) : a PDA with only one 
state.
Define a CFG G = (G, S, P, ) where 

P = { A -> cb | ((q, c, A), (q, b))  d }

Note:  M ==> G is just the inverse of the 
transformation :

G ==> M defined at slide 16. 

Theorem: L(G) = L(M).
Pf: Same as the proof of Lemma 24.1 and Theorem 
24.2.



Simulating general PDAs by CFGsSimulating general PDAs by CFGs

 How to simulate arbitrary PDA by CFG ?
◦ idea: encode all state/stack information in nonterminals !!

Wlog, assume M = (Q, S, G, d, s, , {t}) be a PDA 
with only one final state and M can empty its stack 
before it enters its final state. (The general pda at 
slide 15 satisfies such constraint.)

Let N  Q x G* x Q . Elements of N are written as 
<pABCq>.

Define a CFG G = (N, S, <st>, P ) where 
P = { <pAr>  c <q B1 B2 …Bk r>

|  ((p,c,A), (q, B1B2…Bk))  d, k  0,  c  S U {e},  
r Q }



Rules for  <q BRules for  <q B11 BB22 ……BBkk r> r> 

We want <qB1…Bk r > to simulate the computation process in 
PDA M: 

(q, wy, B1B2…Bkb) |-…|- (r, y, b )  iff <qB1…Bkr> * w.

Hence: if k = 0. ie., <qB1B2…Bkr>  = <qer>, we should have
<qr>  e if q = r and 
<qr>   has no rule if q ≠ r.

If k > 1. Let B1B2…Bk = B1D2 , then :
 <qB1D2r >  Su1∈Q <qB1u1> <u1D2r> 
  Su1∈Q Su2∈Q <qB1u1> <u1B2u2> <u2D2r>
  … 
  Su1∈Q Su2∈Q …   <qB1u1><u1B2u2>…<uk-1BkUk><UkDkr>
  Su1∈Q Su2∈Q …   <qB1u1><u1B2u2>…<uk-1Bk r>



(p, c, A) --> (q, B1B2...Bk)

A
C


p

c x1x2... 

t
t1
t2

t2
t1

p

Bk-1

Bk

C


q

c x1x2...

B1

B2

t
t1

t1
t2

qk=t2qk-1

qk-1

q1

q1 q2
q2 ....

q

We want to use <pAq> * w to simulate
the computation:  (p, wy, Ab) *M (q, y, eb)
So, if (p,c,A) M (q, a) we have rules :
<p A r>  c <q a r> for all states r.



How to derive the rule How to derive the rule <p A r> <p A r>  c <q c <q aa
r>r> ??

How to derive rules for the nonterminal : <q a
r>

 case 1: a = B1B2B3…Bn ( n > 0)
◦ => <q a r > = <q B1Q B2QB3Q…QBnr>
◦ => <q a r >  <q B1 q1 > <q1 B2 q2> … 
◦ <q n-1 Bn r> for all states q1,q2,…,q n-1 in Q.

 case2: a = e.  
◦ q = r  => <q a r> = <q e r>  e.
◦ q != r => <q e r > cannot derive any string.

◦ Then  <pAq>  c <qeq> = c.



Simulating PDAs by CFG (cont’d)Simulating PDAs by CFG (cont’d)

 Note: Besides storing sate information on the  nonterminals, G
simulate M by guessing nondeterministically what states M will 
enter at certain future points in the computation, saving its 
guesses on the sentential form, and then verifying later that those 
guesses are correct.

Lemma 25.1: (p,x,B1B2…Bk) -->n
M (q,e,e)    iff

$ q1,q2,…qk (=q) such that 
<pB1q1><q1B2q2>…<qk-1Bkq> Ln

G x.  (*)

Note: 1. when k = 0  (*) is reduced to <pq> Ln
G x

2. In particular, (p,x,B) -->n
M (q,e,e) iff <pBq> Ln

G x.
Pf: by ind. on n.   Basis: n = 0.  

LHS holds iff ( x = e, k = 0, and p = q )   iff RHS holds.



Simulating PDAs by singleSimulating PDAs by single--state PDAs state PDAs 
(cont’d)(cont’d)

Inductive case:
(=>:) Suppose (p,x,B1B2…Bk) -->n+1

M (q,e,e)  and 
((p,c,B1),(r,C1C2…Cm)) is the first instr. executed. I.e.,
(p,x,B1B2…Bk) -->M (r, y, C1C2…CmB2…Bk) -->n

M (q,e,e),
where x =  cy.

By ind. hyp., $ states r1,...,rm-1,(rm= q1), q2,… qk-1 with
<rC1r1><r1C2r2>...<rm-1Cmq1><q1B2q2>…<qk-1Bkqk> Ln

G y 
Also by the definition of G:
<pB1q1>  c <r0C1r1><r1C2r2>...<rm-1Cmq1> is a rule of G. 

Combining both, we get: 
<pB1q1> <q1B2q2> …<q k-1Bkqk>
LG c <r0C1r1><r1C2r2>...<rm-1Cmq1> <q1B2q2> …<qk-1Bkqk> 
Ln

G c y    ( = x ). 



Simulating PDAs by CFGs (cont’d)Simulating PDAs by CFGs (cont’d)

(<=:)  Suppose <pB1q1><q1 B2 q2>…<q k-1 Bk q> Ln+1
G x.

Let <pB1q1>  c <r0 C1 r1> <r1 C2 r2>... <rm-1 Cm q1>  P --(*) 
be the first rule applied.  i.e., Then

<p B1 q1> <q1 B2 q2> …<q k-1 Bkq>
LG c <r0 C1 r1> <r1 C2 r2>... <rm-1 Cm q1> <q1 B2 q2> …  <qk-1B
LG

n cy   ( = x  )
But then since, by (*),  [(p, c, B1) , (r0, C1C2…Cm)] – (**) is an instr of 

M,
(p,x,B1…Bk) -->M (r0, y, C1C2…CmB2…Bn)   --- By (**)

-->n
M (q,e,e).  -- ,by ind. hyp.  QED

Theorem 25.2 L(G) = L(M).
Pf: x  L(G)  iff  <st> * x 

iff  (s,x,)  -->*M (t,e,e)    ---- Lemma 25.1
iff  x  L(M).  QED



ExampleExample

 L = {x {[,]}* | x is a balanced string of 
[ and ]], i.e., #](x) = 2 #[(x) and all “]]“s must 
occur in pairs } 

 Ex: [ ]] [ [ ]] ]] ∈ L  but [ ] [ ] ]] ∉ L.
 L can be accepted by the PDA
M = (Q, S, G, d, p, ,{t} ), where
Q = {p,q,t}, S = {[,]}, G = {A, B, },
and d is given as follows:
◦ (p, [, ) --> (p, A),  
◦ (p,[,A) -->  (p,AA),  
◦ (p, ], A) --> (q, e), 
◦ (q, ], B) --> (p, e),  
◦ (p,e, ) -->  (t,e) tq

p

],B/e

e,/e

[,A/AA
[,/A

],A/B



 M can be simulated by the CFG G = (N,S, 
<pt>, P) where
◦ N = { <X D Y> | X,Y {p,q,t} and D  { A,B, 

 }  },
◦ and P is derived from the following pseudo rules :
◦ (p, [, ) --> (p, A) :   <p  ?>  [  <pA?>
◦ (p,[,A) -->  (p,AA)   :  <p A ?1>  [  <pA?2A?1>
◦ (p, ], A) --> (q, B),  : <p A ?>  ]  <qB?>
◦ This produce 3 rules ( ? = p or q or t ).
◦ (q, ], B) --> (p, e),  : <q B ?>  ]  <p e ?>
◦ This produces 1 rule :
◦ ( ? = p, but could not be q or t why ?)
◦ <q B ?>  ] <p e ?> => <qBp>  ]  <pep>  
0 ]

◦ (p,e, ) -->  (t,e)  : <p?>  <t e ?>
◦ This results in <pt>  e (since <t e t>  e. )



◦ <p  ?>  [  <pA?>  resulting in 3 rules : ? = p, 
q or t.

◦ <p  p>  [  <pAp>  ---(1)
◦ <p  q>  [  <pAq>  ---(2)
◦ <p  t>   [  <pAt>   ---(3)
◦ (1)~(3) each again need to be expanded into 3 
rules.

◦ <pAp>   <pA?><?  p> where ? is p or q or t.
◦ <pAq>   <pA?><?  q> where ? is p or q or t.
◦ <pA t>   <pA?><?  t> where ? is p or q or t.
◦ <p A ?1>  [  <pA?2A?1> resulting in 9 rules:
◦ Where ?2 = p,q, or t.
◦ <p A p>  [  <pA?2> <?2p>  ---(1)
◦ <p A q>  [  <pA?2> <?2q>  ---(2)
◦ <p A t>   [  <pA?2> <?2t>   ---(3)


